Fast Energy-Harvesting TEG-Supplied Charging Regulator Microsystem

Tianyu Chang, and Gabriel A. Rincón-Mora, Fellow, IEEE

Abstract—This paper presents a fast hysteretic switched-inductor charging regulator (SLCR) microsystem. It is powered by on-chip thermoelectric generators (TEGs) to supply Internet-of-Things (IoT) wireless microsensors. On-chip TEGs are appealing because they are 12–1400× smaller than off-chip ones. IoT sensors mostly idle in low-power mode and transmit data wirelessly only in high-power mode on demand. This requires CMOS SLCRs to respond quickly to abrupt load dumps caused by IoT sensors. State-of-the-art (SoA) SLCRs respond to load dumps in 100 μs–2.5 ms. This time duration amounts to a significant portion of the IoT sensor’s data transmission time (500 μs–7 ms). This slow response time jeopardizes the quality of data transmission. This paper presents a fast hysteretic control that responds in 9.6 μs. This control adopts nested hysteretic architecture and requires only three comparators and simple combinational logics, which is appealing, considering the low power budget limited by on-chip TEGs. Moreover, this paper contributes detailed stability analysis, derives response time and accuracy and provides intuitive and accurate system design equations. Measured results of a 180-nm CMOS prototype validate that the proposed system shortens response time by 10–260× compared to the SoA.

Keywords—Switched inductor, charging regulator, fast, response time, stability, design, energy harvesting, thermoelectric, CMOS.

I. POWERING IoT MICROSENSORS WITH CMOS TEGS

Internet-of-Things (IoT) wireless microsensors can save money, energy, and lives [1]. Because of volume constraints, tiny IoT sensors usually carry small on-board batteries. These tiny batteries carry limited energy and shorten IoT sensors’ lifetimes. Recharging batteries manually is labor intensive since these sensors are usually deployed at hard-to-reach locations. One possible solution is harvesting thermal energy to supply IoT sensors [2]. A thermoelectric generator (TEG) converts thermal gradients to electricity, which can be used to supply IoT sensors.

Typical TEGs are made of bismuth telluride or lead telluride (Bi-/Pb-Te), which are difficult to integrate on chip. Thus, typical TEGs are off chip and bulky, occupying 9–42 cm² [3–6]. Because an IoT sensor can be as tiny as 1.5 mm³ [7], using bulky centimeter-scale off-chip TEGs to power such tiny sensors is unacceptable.

State-of-the-art (SoA) TEGs can be integrated on chip using micro-electro-mechanical systems (MEMS) technology. On-chip TEGs are made of Si, poly-Si, or poly-SiGe, using CMOS or BiCMOS processes and MEMS post-processing [8–11]. They occupy 3–70 mm², which is 12–1400× smaller than off-chip ones.

Unfortunately, the internal source resistance R_s of on-chip TEGs (shown in Fig. 1) is much higher than that of off-chip TEGs. On-chip TEG’s R_s can be 0.7–1.3 MΩ [8–11], whereas off-chip TEGs’ R_s is 0.16–4 Ω [3–6]. This high R_s limits on-chip TEG’s maximum available power P_{MPP} to 1.8–17 nW/°C² [8–11], which is 3300–22000× lower than that of off-chip ones. Table I compares on-chip and off-chip TEGs. v_s is the open-circuit source voltage provided by the TEG.

While IoT sensors consume nanowatts (nW) [1] when sensing, they burn milliwatts (mW) [12] during data transmission [13–14]. Thus, when sensors idle, the CMOS switched inductor charging regulator (SLCR) in Fig. 1 draws input power P_{IN} from the TEG and directs a fraction of P_{IN} to supply load power P_O.

The SLCR charges battery v_B with the remaining fraction of P_{IN} to store this extra energy. When the sensor demands higher power during data transmission, the SLCR draws battery power P_B from v_B to supply the load. This load profile requires the SLCR to respond quickly to load dumps to secure proper sensor function.

![Fig. 1. A CMOS-TEG sourced microsystem.](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>Size</th>
<th>On-Chip v_s [mV/°C]</th>
<th>Off-Chip P_{MPP} [W/°C²]</th>
<th>R_s [Ω]</th>
<th>t_R [μs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-Te</td>
<td>29 x 29</td>
<td>OFF 30</td>
<td>4.0</td>
<td>56 μs</td>
<td>3</td>
</tr>
<tr>
<td>Bi-Sb-Te</td>
<td>63 x 63</td>
<td>OFF 15</td>
<td>160 m</td>
<td>300 μs</td>
<td>4</td>
</tr>
<tr>
<td>Pb-Te</td>
<td>61 x 71</td>
<td>OFF 40</td>
<td>1.0</td>
<td>400 μs</td>
<td>5</td>
</tr>
<tr>
<td>PbTe-BiTe</td>
<td>56 x 56</td>
<td>OFF 28</td>
<td>970 m</td>
<td>210 μs</td>
<td>6</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>3 x 3</td>
<td>ON 160</td>
<td>1.3 M</td>
<td>4.9 n</td>
<td>8</td>
</tr>
<tr>
<td>Poly-Si</td>
<td>3 x 1</td>
<td>ON 150</td>
<td>700 k</td>
<td>8.0 n</td>
<td>9</td>
</tr>
<tr>
<td>Si</td>
<td>11 x 1.5</td>
<td>ON 250</td>
<td>900 k</td>
<td>17 n</td>
<td>10</td>
</tr>
<tr>
<td>Poly-SiGe</td>
<td>14 x 5</td>
<td>ON 74</td>
<td>760 k</td>
<td>1.8 n</td>
<td>11</td>
</tr>
</tbody>
</table>

* Estimates.

Previous studies in [16–20] rarely report load dump responses. For those that do, reported response time t_D is 100 μs–2.5 ms [21–24]. This slow t_D amounts to a significant fraction of the duration of data transmission (0.5–7 ms [13–14]) and may jeopardize data quality. Moreover, prior arts rarely analyze control stability.

Thus, this paper presents a fast hysteretic SLCR microsystem achieving 9.6 μs t_R. With detailed theory, this paper analyzes control stability, derives t_R and accuracy, and provides closed-form design equations. Moreover, in catering to the high R_s and low P_{MPP} of on-chip TEGs, this control employs only three comparators and combinational logics. This implies lower controller power for on-chip implementations. Contributions of this paper include the following:

- A fast hysteretic SLCR microsystem.
- Detailed stability analysis.
- Closed-form design equations.
- Designed hardware and measured results.
1) A fast hysteretic SLCR microsystem with 9.6-μs t_{EB}.
2) Stability, t_{EB}, and accuracy analysis with design equations.
3) Extensive measurements verifying theory, design expressions, and transient performance.

Section II introduces the SLCR system and analyzes stability and t_{EB}. Sections III and IV derive system design equations and present measured performances. Section V concludes this paper.

II. PROPOSED BATTERY-CHARGING VOLTAGE REGULATOR

The proposed CMOS SLCR system is shown in Fig. 2. When the on-chip TEG’s P_{MPP} exceeds the demand of the IoT load (i.e., sensor idles), this SLCR is in harvest mode. In harvest mode, M_I always closes, and M_{GB} closes to energize L_X from v_{IN}. Output hysteretic comparator C_{PO} dictates whether L_X’s energy is drained into output v_O or v_B. When v_O drops to C_{PO}’s lower hysteretic trip point $v_{H(O-)}$, C_{PO} trips low. Then, every time L_X drains, switching logic closes M_{GB} to supply v_O, so v_O rises. When v_O rises to C_{PO}’s upper hysteretic trip point $v_{H(O+)}$, C_{PO} trips high. Then, every time L_X drains, switching logic closes M_B to charge v_B. This way, C_{PO} limits v_O within its hysteretic window $\Delta v_{H(O)}$ and charges v_B with excess available power.

If the IoT load demands a power higher than P_{MPP}, v_O will drop below $v_{H(O-)}$. When v_O hits the load-dump hysteretic comparator C_{PLD}’s lower trip point $v_{H(LD-)}$, C_{PLD} trips low, and the SLCR enters battery-assist mode. In this mode, M_I always opens, and L_X, M_B, M_{GB}, M_{GI}, and M_{MO} buck or boost v_B to v_O. The maximum voltage selector (the “MAX” block in Fig. 2) outputs the higher voltage between v_O and v_B, which is called v_{MAX}. Its schematic is shown in Fig. 3 [25]. When v_O is lower than v_B, switch M_{VB} closes to short v_B to v_{MAX}, and vice versa.

SLCR is in discontinuous conduction mode (DCM) and adopts the constant-energy-packet scheme described in [25], which fixes the peak inductor current by fixing the energizing time under given v_{IN}. The constant energy packet scheme keeps each energy packet the same and only adjusts the duration of energy delivery to adjust the power delivered (i.e., in Fig. 12 the harvester delivers energy for 260 ms each time with 20 nA load, whereas it delivers energy for 830 ms each time with 40 nA load). Thus, its efficiency stays optimally flat across power level and is the same as the efficiency of each energy packet. Fixing the energizing time eliminates the need for an inner current loop.

All energy packets E_S drawn from v_{IN} are identical in harvest mode (i.e., identical harvest-mode peak current $i_{L(S.PK)}$ as in Fig. 4). In battery-assist mode, all energy packets that E_B draws from v_B are also identical (i.e., identical battery-assist mode peak current $i_{L(B.PK)}$). i_L is negative in battery-assist mode because it reverses direction. In Fig. 4, $i_{L(S.AVG)}$ and $i_{L(B.AVG)}$ are the average i_L across one E_S and E_B, respectively. Optimal $i_{L(S.PK)}$ and $i_{L(B.PK)}$ varies across v_{IN} and v_O, and the design of optimal packets is analyzed in detail in [25].

If v_{IN} hits the TEG’s maximum-power-Point (MPP) voltage v_{MPP} in harvest mode, MPP comparator C_{PMPP} trips, and the SLCR draws one E_S from v_{IN}. v_{IN} drops after drawing each E_S and recovers to v_{MPP} before drawing the next, as in Fig. 8. In battery-assist mode, E_S is intentionally skipped because supplying IoT load with enough power is a priority over harvesting energy from TEG. TEG outputs P_{MPP} if v_{IN} equals half v_S. v_{MPP} is chosen such that the average input voltage $v_{IN\text{AVG}}$ equals half v_S.

Delay t_{ES} loops SR latch in Fig. 2 to generate energize time t_{EB}. In harvest mode, L_X energizes across t_{ES} to harvest one E_S. In battery-assist mode, E_S is intentionally skipped because supplying IoT load with enough power is a priority over harvesting energy from TEG. TEG outputs P_{MPP} if v_{IN} equals half v_S. v_{MPP} is chosen such that the average input voltage $v_{IN\text{AVG}}$ equals half v_S.

Delay t_{ES} loops SR latch in Fig. 2 to generate energize time t_{EB}. In harvest mode, L_X energizes across t_{ES} to harvest one E_S, as in Fig. 4. $i_{L(S.PK)}$ is optimized across v_{MPP}, so the SLCR is optimally efficient across v_S. Fig. 5 shows optimal $i_{L(S.PK)}$ across v_S. With higher R_S, the TEG avails less power, and the MOS switches’ leakage loss signifies. Thus, the channel widths of MOS switches are narrow with higher R_S to reduce leakage. This raises their conduction resistance and thus lowers the optimal peak current. The work does not need a current limit, as $i_{L(PK)}$ is at mA level. Loss analysis and measured efficiency of this proposed SLCR are in [25], and the max efficiencies in harvest and battery-assist mode are 77% and 88%, respectively. Delay t_{ES} loops SR latch to generate energize time t_{EB}. L_X energizes across t_{EB} in battery-assist mode to draw one E_B from v_B. t_{EB} is optimized for nominal v_B and v_O, which are 1.8 V and 1 V, respectively.

A. Output Loop

Operation and Model: C_{PO}, output capacitor C_O, IoT load, v_B, and SLCR power stage close the output loop in harvest mode. Given the constant-energy-packet scheme, the output loop does not adjust $i_{L(S.PK)}$ in harvest mode, as the i_L profile in Fig. 4 and 6 shows. Thus, although i_L varies at every time instance, the average i_L across one energy packet (labeled $i_{L(S\text{AVG})}$ by
the dashed line in Fig. 4) is independent of the output loop. Given this independence, the SLCR power stage, on average, should be modeled as a current source in the output loop equivalent model in Fig. 7. This current source models the average current the SLCR outputs to \(v_O \) or \(v_B \), which is a \(D_O(S) \) fraction of \(i_L(S.AVG) \). \(D_O(S) \) is \(M_O \)'s or \(M_B \)'s duty cycle in harvest mode. \(i_L(S.AVG)' \) nears half \(i_L(S.PK) \). In harvest mode, the idling IoT load sources nA output current \(i_O(S) \). The STDP switch is only a behavioral model that depicts \(C_P \) directing harvest mode. \(i_L(S.AVG)' \) nears half \(i_L(S.PK) \). In harvest mode, the oscillator "relaxes" to a fraction of \(i_L(S.AVG)' \). \(D_O(S) \) is \(M_O \)'s or \(M_B \)'s duty cycle in average current the SLCR outputs to \(v_O \) or \(v_B \), which is a \(D_O(S) \) equivalent model in Fig. 7. This current source models the energy to either \(v_O \) or \(v_B \).

Given this independence, the SLCR power stage, on average, is measured using a small 110-nF storage capacitor \(C_B \) for testing purposes only, to show discernable rise in \(v_B \). The \(C_B \) charges \(v_B \) while keeping TEG at its MPP until \(v_B \) hits the CMOS breakdown voltage, which is 1.8 V for this work. Afterward, the harvester only draws power from the TEG to supply \(P_D \) without charging the \(v_B \). Thus, the TEG would deviate from its MPP. In this prototype, an off-chip FPGA monitors \(v_B \). Once \(v_B \) hits \(V_{BD} \), the FPGA tells the SLCR to stop charging \(v_B \). Breakdown protection, as in [16], can be applied to this work as well.

Stability: An oscillation is stable and sustaining if the total phase shift and gain are 360° and 1 at the oscillation frequency \(f_0 \) [26]. Negative feedback with an additional 180° phase shift at \(f_0 \) provides a 360° phase shift. \(C_P \) reverses \(v_O \)'s direction whenever it engages (trips). Because of this reversal effect, \(C_P \) closes a negative feedback loop and offers 180° phase shift at \(f_0 \).

\(C_b \) delays the rise and fall of \(v_O \) and thus offers an additional phase shift at \(f_0 \). After \(C_P \) engages and reverses \(v_O \)'s direction when \(v_O \) hits \(v_{H(O–)} \) at 600 ms in Fig. 6, \(C_P \) "relaxes" and cannot keep engaging. This is because \(C_P \)'s trip point has risen from \(v_{H(O–)} \) to \(v_{H(O+)} \) and \(C_b \) delays the rise of \(v_O \). \(C_P \) re-engages and reverses \(v_O \)'s direction at 900 ms after \(v_O \) rising delay \(t_{RISE} \). After \(C_P \) re-engages at 900 ms, it "relaxes" again and cannot keep engaging. It engages again at 1200 ms after \(v_O \)'s falling delay \(t_{FALL} \). Thus, the average delay \(t_{DLY(AVG)} \) created by \(C_b \) is the average of the rising and falling delays:

\[
t_{DLY(AVG)} = \frac{t_{RISE} + t_{FALL}}{2} = \frac{t_0}{2}. \tag{4}
\]

The effective phase shift \(\angle A_{DLY} \) caused by \(t_{DLY(AVG)} \) at \(f_0 \) is

\[
\angle A_{DLY} |_{f_0} = \frac{t_{DLY(AVG)}}{t_0} \times 360° = 180°. \tag{5}
\]

The output loop’s total phase shift \(\angle A_{LG(O)} \) at \(f_0 \) therefore is

\[
\angle A_{LG(O)} |_{f_0} = \angle A_{CPO} + \angle A_{DLY} |_{f_0} = 360°. \tag{6}
\]

\(C_P \)'s hysteretic window sets \(v_O \)'s oscillation amplitude and effectively forces the output loop’s loop gain \(A_{LG(O)} \) to 1 at \(f_0 \):

\[
A_{LG(O)} |_{f_0} = 1. \tag{7}
\]

Equations (6) and (7) justify that \(v_O \) oscillation is stable.

B. MPP Loop

Operation and Model: On-chip TEG, input capacitor \(C_{IN} \), \(CP_{MPP} \), SR latch and delay block \(t_{ES} \), and SLCR power stage close the MPP loop. In harvest mode, if \(v_{IN} \) hits \(V_{MPP} \), as in Fig. 8, \(CP_{MPP} \) trips high and triggers the SR latch in Fig. 2 to generate a pulse that closes \(M_{GB} \) to energize \(L_X \). The fractional open-circuit voltage (FOCV) method [18] is applied to generate \(V_{MPP} \). Pulse width is set by the \(V_{MPP} \)-dependent delay \(t_{ES} \). Fig. 8 shows a zoomed-in \(i_L \) profile for this particular \(E_S \). \(L_X \) drains to \(v_O \) across drain time \(t_{DLY} \).

The input voltage \(v_{IN} \) rises every time after it plummets because the 250-mV source voltage \(v_S \) charges the input capacitor \(C_{IN} \) through the source resistance \(R_S \). The \(v_S \) and \(R_S \)
are defined in Fig. 1. After \(v_{IN} \) rises to \(v_{MPP} \), the MPP loop sends out an energizing command \(t_{ES} \) so that the SLCR draws one energy packet from the source. Therefore, the input voltage \(v_{IN} \) drops. After drawing one energy packet, \(v_{IN} \) drops below \(v_{MPP} \), so \(CP_{MPP} \) dictates the SLCR to stop drawing energy from the source. Therefore, the input voltage \(v_{IN} \) can recover as \(v_S \) charges \(C_{IN} \) through \(R_S \). After a duration of \(t_S \), \(v_{IN} \) recovers to \(v_{MPP} \) again, and \(CP_{MPP} \) trips to dictate the SLCR to draw the next energy packet. \(C_{IN} \) suppresses the ripple of the \(v_{IN} \), which is denoted as \(\Delta v_{IN} \) in Fig. 8. This way, the input voltage could be as close to a dc voltage as possible.

The optimal energizing time \(t_{ES} \) that gives the highest efficiency is the result of balancing ohmic loss, charge loss, and leakage loss. The details of designing the optimal \(t_{ES} \) are described in [25]. The 2.2-\(\mu \)s delay cell \(t_{ES} \) loops the SR latch to generate this 2.2-\(\mu \)s energizing time pulse, which is ultimately triggered by the Maximum-Power-Point (MPP) comparator \(CP_{MPP} \). Once the input voltage \(v_{IN} \) hits \(v_{MPP} \) and causes \(CP_{MPP} \) to trip, the output of the SR latch is set to high. After a delay of \(t_{ES} \), the reset signal of the SR latch trips high and then resets the output of the SR latch. As a result, a pulse of width \(t_{ES} \) is generated.

Similarly, because of the constant-energy-packet scheme, the MPP loop does not adjust \(i_L(S,PK) \), as the \(i_L \) profile in Fig. 8 shows. Thus, although \(i_L \) varies at every time instance, the average \(i_L \) across one energy packet labeled as \(i_L(S,AVG') \) by the dashed line in Fig. 4) is independent of the MPP loop. Therefore, the current source in Fig. 9 models the average \(i_L \) across one \(E_S \) and \(t_{ES} \) together set \(\Delta v_{IN} \) for a preset duration \(t_{ES} \) every time \(CP_{MPP} \) trips high.

![Fig. 8. Measured MPP loop large-signal oscillation waveforms.](image)

The model in Fig. 9 shows that the MPP loop can also be interpreted as a relaxation oscillator. \(CP_{MPP} \)'s trip point \(v_{MPP} \) sets the upper bound of \(v_{IN} \). Current source \(i_L(S,AVG') \) discharges \(v_{IN} \) from a designed \(C_{IN} \) for a preset duration \(t_{ES} \). Thus, \(C_{IN} \), \(i_L(S,AVG') \), and \(t_{ES} \) together set \(\Delta v_{IN} \), which consequently sets \(v_{IN} \)'s lower bound \(v_{IN(LO)} \) as labelled in Fig. 8. Therefore, the MPP loop is also a hysteretic relaxation oscillator.

![Fig. 9. MPP loop large-signal oscillation model.](image)

After drawing one \(E_S \) from \(v_{IN} \) at 2 ms, as Fig. 8 shows, source current \(i_S \) charges \(C_{IN} \), and therefore \(v_{IN} \) rises. When \(v_{IN} \) hits the hysteretic upper bound \(v_{MPP} \) again, the SLCR draws one \(E_S \) again and discharges \(v_{IN} \) to the lower hysteretic bound \(v_{IN(LO)} \) once more at 23 ms. This marks the start of the next oscillation cycle. The SLCR draws one \(E_S \) per \(v_{IN} \) oscillation period \(t_S \). To harvest the most power, the power drawn from \(v_{IN} \) should be close to \(P_{MPP} \). Therefore, \(t_S \) is

\[
t_s = \frac{E_s}{P_s} \approx \frac{E_s}{P_{MPP}} = \left(\frac{\left(\frac{i_L(S,PK)}{2} \right) R_S}{0.5 v_S} \right)^{1/2},
\]

where the optimal \(i_L(S,PK) \) across \(v_S \) is shown in Fig. 5.

Stability: \(CP_{MPP} \) reverses the direction of \(v_{IN} \) every time it engages (discharges \(v_{IN} \)). \(t_{ES} \) always reverses \(v_{IN} \)'s direction (charges \(v_{IN} \)) after the SLCR draws one \(E_S \). Therefore, given this reversal effect, \(CP_{MPP} \) and \(i_S \) establish negative feedback. \(C_{IN} \) delays the rising of \(v_{IN} \) as \(i_S \) requires about 21 ms to charge \(v_{IN} \), as Fig. 8 shows. \(C_{IN} \) also delays the falling of \(v_{IN} \) because it takes the SLCR one \(t_S \) to discharge \(C_{IN} \). Thus, the MPP loop's gain is 1 at \(t_S \). Therefore, for the same reasons stated for the output loop, the MPP loop oscillation is also stable.

C. Load-Dump Loop

Operation and Model: The \(CP_{LD} \), \(C_O \), IoT load, and SLCR power stage close the load-dump loop. When the IoT load draws high load-dump current \(i_O(LD) \), \(v_O \) drops to \(v_{H(LD–)} \) at 27 \(\mu \)s, as in Fig. 10. Then, \(CP_{LD} \) trips low, and the SLCR enters battery-assist mode to deliver consecutive \(E_B \) packets to \(v_O \). When \(CP_{LD} \) trips low, \(CP_{LD} \) is designed to override \(CP_O \) to prevent racing between the output loop and the load-dump loop. When \(v_O \) hits \(v_{H(LD+)} \), \(CP_{LD} \) trips high, and the SLCR stops drawing \(E_B \) from \(v_{B} \), so \(v_O \) falls. This way, \(CP_{LD} \) limits \(v_O \) within its hysteretic window \(\Delta v_{H(LD)} \).

![Fig. 10. Measured positive load dump transient waveforms.](image)
the load-dump loop equivalent model in Fig. 11. During \(t_{RISE} \),
the load-dump loop current source is enabled, and the current
that the SLCR outputs from \(v_B \) to \(v_O \) is a \(D_{O(B)} \) fraction of
\(i_{L(B.AVG)} \), where \(i_{L(B.AVG)} \) is the average \(i_L \) across one \(E_B \) packet,
as the \(i_L \) profiles show in Fig. 4 and 10, which is half \(i_L(B,PK) \),
\(D_{O(B)} \) is the SLCR’s output duty cycle. It is 1 if the SLCR
bucks \(v_B \) to \(v_O \); and \(D_{O(B)} \) is \(M_O \)’s duty cycle if the SLCR
boosts \(v_B \) to \(v_O \).

The model in Fig. 11 shows that the load-dump loop is also
fundamentally a relaxation oscillator. The current difference
between \(i_{L(B.AVG)} \) and \(i_{O(LD)} \) charges \(v_O \) when \(CP_{LD} \) trips
low, so \(v_O \) rises, as in Fig. 10. \(v_O \)’s rise time \(t_{RISE} \) is
\[
\begin{align*}
 t_{RISE} &= \frac{C_O \Delta v_{H(LD)}}{i_{L(B.AVG)}} - t_p, \quad (9)
\end{align*}
\]
where \(t_p \) is \(CP_{LD} \)’s propagation delay. When \(v_O \) hits \(v_{H(LD)+} \),
\(CP_{LD} \) trips high, and the SLCR stops delivering \(E_B \) packets, so
\(i_{O(LD)} \) drains \(v_O \). Fall time \(t_{FALL} \) is
\[
\begin{align*}
 t_{FALL} &= \frac{C_O \Delta v_{H(LD)}}{i_{O(LD)}} + t_p. \quad (10)
\end{align*}
\]

When \(v_O \) falls to \(v_{H(LD)-} \), \(CP_{LD} \) trips low, and SLCR draws
\(E_B \) to charge \(v_O \) again, which marks the start of the next
oscillation cycle. The load-dump loop’s \(t_r \) is the same as in
(3).

Stability

The load-dump loop, if alone, is stable for reasons similar to those stated for the output loop. However,
the load-dump loop is not alone, as the output loop parallels it. Fig. 11 shows this parallel arrangement. If \(v_{IN} \) hits \(v_{MPP} \) when
a falling \(v_O \) falls between \(v_{H(O-)} \) and \(v_{H(LD)-} \), the output loop tries
to deliver one \(E_B \) to \(v_O \). However, because \(P_{MPP} \) is too low to supply \(P_O \) when the load current is high, \(v_O \) keeps falling
and would inevitably drop below \(v_{H(LD)-} \). This means the
output loop is railed out so that \(v_O \) keeps dropping despite the
output loop’s actions. Because it has been railed out, the
output loop’s gain \(ALG(O) \) is effectively zero:
\[
\begin{align*}
 ALG(O)|_{RAILED-OUT} &= 0. \quad (11)
\end{align*}
\]

When the load-dump loop relaxes as \(v_O \) falls, it leaves only
a railed-out output loop with zero loop gain. Thus, the load-dump loop dominates the output loop in battery-assist mode,
and no instability would arise from parallelizing two loops.

D. Response Time

Light Load Dump

If \(P_{MPP} \) can supply the variation of \(P_O \), the SLCR stays in harvest mode, and this paper calls this light \(P_O \) variation a "light load dump." Fig. 12 shows measured responses of rising and falling light load dumps when \(i_{O(S)} \) steps between 20 nA and 40 nA. A higher \(i_o \) demands more \(E_S \) to charge \(v_O \) from \(v_{H(O-)} \) to \(v_{H(O+)} \), so \(t_{RISE} \) increases from 260 ms to 830 ms. \(t_{FALL} \) decreases from 320 ms to 160 ms because a higher \(i_{O(S)} \) discharges \(v_O \) faster. Because less \(E_S \) reaches \(v_B \) with a higher \(i_{O(S)} \), \(v_B \) charges with shorter charging interval \(t_{CHG} \), as the \(v_B \) profile shows. Because the SLCR needs not activate the load-dump loop for light load dumps, it responds within one \(t_o \).

Heavy Load Dump

If \(P_{MPP} \) is insufficient to supply the increase of \(P_O \), the SLCR must activate the load-dump loop and enter battery-assist mode. Similarly, if there is a drastically falling load dump, the SLCR must deactivate the load-dump loop and re-enter harvest mode. This paper calls this drastic \(P_O \) variation a "heavy load dump." Fig. 10 shows measured waveforms of a heavy rising 1-mA load dump.
Because the switching logic skips ES packets in battery-assist mode, \(v_{IN}\) may reach beyond \(v_{MPP}\). After a falling heavy load dump, the MPP loop and \(v_{IN}\) must resettle to steady state. As Fig. 14 shows, when the SLCR exits battery-assist mode at 23.5 ms, the MPP loop immediately draws consecutive ES packets from \(v_{IN}\) until \(v_{IN}\) drops below \(v_{MPP}\). Because \(v_{IN}\)'s valley value at 23.5 ms is higher than \(v_{IN}\)'s steady state valley value, it takes \(v_{IN}\) only 4.4 ms (less than steady state \(t_{S}\), which at 28 ms, and MPP loop draws another ES. After 28 ms, the load settles within one \(t_{S}\). MPP loop settles to steady state. As a result, the MPP loop is 8.9 ms) to recharge to \(v_{MPP}\) again. Thus, \(v_{IN}\) hits \(v_{MPP}\) again.

III. PROTOTYPE DESIGN

A. IoT Wireless Microsensor

To reduce power consumption, IoT wireless microsensors mostly idle and sense and transmit data only on demand. Fig. 15 shows the load current profile of a typical IoT wireless microsensor. When idling, state-of-the-art (SoA) sensors may consume sub-nW standby power [27]. Some sensors adopt always-on wake-up receivers (Rx), and SoA wake-up Rx may consume sub-nW [28], leading to sub-nW total standby power. Thus, idle load current \(i_{O(IDLE)}\) in Fig. 15 is sub-nW.

When sensing, SoA sensors consume 10–100 nW [1, 25], so the sensing load current \(i_{O(SNS)}\) is on the order of nA. During transmission, SoA transmitters (Tx) may consume 1.2 mW from 0.8–1.0 V supply voltages [12]; thus, transmission load current \(i_{O(XFER)}\) is on the order of 1 mA. The duration of each transmission \(t_{XFER}\) is 500 \(\mu\)s–7 ms [13–14]. Practical IoT sensors may transmit only four times per day [15], so the sensing load current \(i_{O(SNS)}\) is on the order of nA.

During transmission, SoA transmitters (Tx) may consume 1.2 mW from 0.8–1.0 V supply voltages [12]; thus, transmission load current \(i_{O(XFER)}\) is on the order of 1 mA. The duration of each transmission \(t_{XFER}\) is 500 \(\mu\)s–7 ms [13–14]. Practical IoT sensors may transmit only four times per day [15], so idling time \(t_{IDLE}\) is much longer than sensing time \(t_{SNS}\) and \(t_{XFER}\). As a result, average load current \(i_{O(AVG)}\) is nearing \(i_{O(IDLE)}\). Table II lists typical performances of SoA IoT wireless microsensors.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Item</th>
<th>Value</th>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{O})</td>
<td>0.8–1.0 V</td>
<td>(i_{O(XFER)})</td>
<td>0.5–7 ms</td>
<td>(P_{O(XFER)})</td>
<td>410–810 pW</td>
</tr>
<tr>
<td>(v_{O(SNS)})</td>
<td>6.4–43 nA</td>
<td>(i_{O(XFER)})</td>
<td>0.63–1.2 mA</td>
<td>(i_{O(IDLE)})</td>
<td>410–810 pA</td>
</tr>
<tr>
<td>(v_{O(SNS)})</td>
<td>6.4–43 nA</td>
<td>(i_{O(IDLE)})</td>
<td>0.63–1.2 mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Hysteresis

\(\Delta v_{H(O)}\) and \(\Delta v_{H(LD)}\) must overcome noise floor \(v_{N*}\) so that \(C_{P}\) and \(C_{P LD}\) can trip properly. Therefore, \(C_{P}\)'s hysteretic window \(\Delta v_{H(O)}\) should be much greater than \(v_{N*}\), as in (14).

\[
\Delta v_{H(O)} \gg v_{N*}.
\]

\(C_{P LD}\)'s hysteretic window \(\Delta v_{H(LD)}\) must be amply separated from \(\Delta v_{H(O)}\) so that \(C_{P L D}\) does not misfire in the presence of noise, as in Fig. 10. Thus, \(\Delta v_{H(LD)}\)'s design constraints is

\[
\Delta v_{H(LD)} - \Delta v_{H(O)} \gg v_{N*}.
\]

C. Input Capacitor

\(C_{IN}\) suppresses \(\Delta v_{IN}\). When drawing \(ES\) from \(v_{IN}\), \(C_{IN}\) supplies energy \(E_{VIN}\) temporarily, and \(v_{IN}\) drops from \(v_{MPP}\) to \(v_{IN}\). Because \(R_{S}\) is on the order of \(M\), \(C_{IN}\) temporarily supplies most \(ES\) energy, so \(ES\) is roughly \(\Delta v_{CIN}\), as in (16).

\[
E_{L} \approx E_{VIN} = 0.5C_{IN} \left[v_{MPP} - (v_{MPP} - v_{IN})^2 \right].
\]

Therefore, \(\Delta v_{IN}\) is

\[
\Delta v_{IN} \approx \frac{E_{L}}{C_{IN} v_{MPP}} \gg v_{N*}.
\]

However, \(\Delta v_{IN}\) must be large enough to overcome \(v_{N*}\) so \(CP_{MPP}\) can trip properly, as (17) depicts. Fig. 16 shows calculated and simulated \(\Delta v_{IN}\) across \(C_{IN}\). This work sets \(\Delta v_{IN}\) to 30 mV to overcome \(v_{N*}\), and the resulting \(C_{IN}\) is 75 nF.

D. Output Capacitor

\(t_{R}\) dictates \(C_{O}\) selection. This design aims at fast response against rising heavy load dumps. \(t_{R}\) is set to be less than 5% of the 500- \(\mu\)s minimum transmission duration \(t_{XFER(MIN)}\) [13]:

\[
t_{R} < 5\%t_{XFER(MIN)}.
\]

For a Tx that draws 1-mA \(i_{O(XFER)}\) from 1-V \(v_{O}\), forcing (12) less than 5% \(t_{XFER(MIN)}\) results in (19), which demands \(C_{O}\) < 350 nF. Fig. 17 shows simulated and calculated \(t_{R}\) across \(C_{O}\). For design margin, this work uses a 110-nF \(C_{O}\).
\[
C_0 < \frac{(5\% t_{\text{XFER(min)}} - t_p) i_{\text{O(XFER)}}}{0.5 \Delta V_{H(O)} + 0.5 \Delta V_{H(LD)}}.
\]

E. Storage Capacitor

When the ambient energy source disappears, IoT sensors become offline. IoT sensors must transmit all data previously acquired, in addition to sending an off-line report [29]. Each transmission event requires energy \(E_{\text{XFER}}\):

\[
E_{\text{XFER}} = P_{\text{O(XFER)}} t_{\text{XFER}}.
\]

Therefore, storage capacitor \(C_B\) must hold enough energy to sustain two \(E_{\text{XFER}}\). To minimize the size of \(C_B\), \(C_B\) must hold the highest energy with lowest capacitance. This means \(v_B\) should start at its maximum voltage, which is the CMOS breakdown voltage \(V_{BD}\). Assuming two \(E_{\text{XFER}}\) discharge \(C_B\) by \(\Delta v_B\), the energy \(\Delta E_{CB}\) drawn from \(C_B\) is

\[
\Delta E_{CB} = 0.5C_B \left[V_{BD}^2 - (V_{BD} - \Delta V_B)^2 \right] \approx 2E_{\text{XFER}}.
\]

Therefore, \(\Delta v_B\) is

\[
\Delta v_B = V_{BD} - \sqrt{\frac{2E_{\text{XFER}}}{0.5C_B}}.
\]

Simulated and calculated \(\Delta v_B\) across \(C_B\) are illustrated in Fig. 18. To prevent crashing \(v_B\), this design chooses a 2.2-\(\mu\)F \(C_B\) and the resulting \(\Delta v_B\) is about 400 mV. SPICE simulation generated the simulation results shown in Fig. 16–18.

![Fig. 18. \(\Delta v_B\) across \(C_B\).](image)

IV. MEASURED PERFORMANCE

The 180-nm CMOS prototype in Fig. 19 integrates the power switches, gate drivers, and max block (Fig. 2). The printed circuit board (PCB) shows the \(5 \times 5 \text{mm}^2\) IC package and the \(3 \times 3 \times 1 \text{mm}^3\) inductor. \(C_{\text{IN}}, C_0,\) and \(C_B\) are multi-layer ceramic capacitors. Their total leakage loss, measured by Keithley 6485 Pico-Ammeter with \(\pm 10\)-fA accuracy, is 60–70 pW. Like [25, 30], an onboard voltage source emulates on-chip TEG’s \(v_S\), and a 1-\(\Omega\) onboard resistor emulates \(R_S\). A field-programmable gate array (FPGA) controls the SLCR. State-of-the-art on-chip controllers consume around 50 pJ / cycle, as in [25]. In harvest mode, this translates to a current consumption of 1.25–5 nA, given \(t_s\) is around 10–40 ms, as in Fig. 23, and the controller supply \(V_{MAX}\) could be as low as 1 V. The impact of the controller power consumption is presented in detail in [25] and shows that the controller power would decrease the overall efficiency by 8%.

A grounded metal noise shield encloses the PCB and reduces noise at low power level for all measurements. Additionally, all measurements were conducted in a noise-shielded metal chamber. Onboard off-the-shelf unity-gain buffers with 2-fA input current drives all voltage probes to prevent them from loading the Device Under Test (DUT) directly.

A. Response Time

Measured and calculated \(t_{R+}\) and \(t_{R-}\) across load dump current \(i_{O(LD)}\) are shown in Fig. 20. For increasing \(i_{O(LD)}\), \(t_{R+}\) shortens because \(i_{O(LD)}\) discharges \(v_O\) faster from \(V_{H(O+)}\) to \(V_{H(LD–)}\). For falling heavy load dumps, pre-determined constant \(E_B\) packets charge \(C_O\) from \(V_{H(LD–)}\) to \(V_{H(LD+)}\). Constant \(E_B\) packets are independent of \(i_{O(LD)}\); therefore, \(t_{R-}\) is approximately independent of \(i_{O(LD)}\). Assuming a \(i_{O(XFER)}\) of about 1 mA, as Section III. A. justifies, \(t_{R-}\) is 9.6 \(\mu\)s when the IoT sensor abruptly activates data transmission.

![Fig. 20. \(i_{O(LD)}\) across load-dump current \(i_{O(LD)}\).](image)

B. Accuracy

Static: When the SLCR reaches steady state in harvest mode, \(v_O\) ripples within \(\Delta V_{H(O)}\). Because millisecond \(t_P\) is much greater than microsecond \(t_R\) in harvest mode, \(t_P\)’s effect on static \(v_O\) error \(v_{OE(S)}\) is negligible. Therefore, \(v_{OE(S)}\) is approximately half the hysteretic window \(\Delta V_{H(O)}\) as in (23).

\[
v_{OE(S)} = \pm 0.5 \Delta V_{H(O)} + t_R \left(\frac{d v_O}{d t} \right) \approx \pm 0.5 \Delta V_{H(O)}.
\]

Dynamic: Dynamic \(v_O\) error \(v_{OE(D)}\) gauges \(v_O\) accuracy under rising and falling heavy load dumps. Because \(t_P\) is comparable to \(t_{R+}\) and \(t_{R-}\), \(t_P\)’s effect on \(v_{OE(D)}\) are noticeable. \(t_P\) exacerbates dynamic \(v_O\) error \(v_{OE(D)}\) under rising heavy load dumps because \(i_{O(LD)}\) keeps discharging \(v_O\) below \(V_{H(O+)}\) before CP_{LD} can react. Therefore, \(v_{OE(D)}\) is half \(\Delta V_{H(LD)}\) plus the extra drop caused by \(t_P\) as in (24).

\[
v_{OE(D)} = 0.5 \Delta V_{H(LD)} + t_P \left(\frac{i_{O(LD)}}{C_O} \right).
\]

\(t_P\) exacerbates dynamic \(v_O\) error \(v_{OE(D)}\) under falling heavy load dumps as extra \(E_B\) would overcharge \(v_O\) beyond \(V_{H(LD–)}\) before CP_{LD} can tell the SLCR to stop delivering \(E_B\) packets. \(v_{OE(D)}\) is half \(\Delta V_{H(LD)}\) plus the extra overcharge caused by \(t_P\):

\[
v_{OE(D)} = 0.5 \Delta V_{H(LD)} + t_P \left(\frac{i_{O(LD)} \Delta V_{O(B)}}{C_O} \right).
\]
C. Oscillation Periods

Output Loop: Measured and calculated harvest-mode \(t_o \) across static load current \(i_{O(S)} \) is shown in Fig. 22. As \(i_{O(S)} \) increases, \(t_{\text{FALL}} \) shortens with increasing \(i_{O(S)} \) because a higher \(i_{O(S)} \) discharges \(v_O \) faster. Therefore, \(t_o \) shortens at first because \(t_{\text{FALL}} \) shortens. As \(i_{O(S)} \) keeps increasing, charging \(v_O \) from \(v_{O(B)-} \) to \(v_{O(B)+} \) requires more \(E_S \). Therefore, \(\text{RISE} \) increases with increasing \(i_{O(S)} \), and \(t_o \) eventually starts to increase as \(i_{O(S)} \) increases. The measured shortest \(t_o \) is about 580 \(\mu s \), so the maximum harvest-mode oscillating frequency \(f_o \) is 1.7 Hz. As \(v_S \) rises, the TEG avails more power so the SL charges the output faster as each energy packet becomes larger (i.e., higher \(i_{L(PK)} \) as Fig. 5 shows). Thus, \(t_{\text{RISE}} \) decreases as \(v_S \) rises. Comparators execute system operation without a clock. So, the system automatically adjusts its frequency according to \(R_S \) and can offset non-idealities such as \(R_S \) variation.

MPP Loop: Measured and calculated \(t_s \) across \(v_S \) are shown in Fig. 23. The energy source avails more power as \(v_S \) rises. Therefore, the MPP loop draws more frequent \(E_S \) packets from \(v_{IN} \), so \(t_S \) drops. Calculated \(t_s \) deviates more from measured \(t_s \) when \(v_S \) is low. This is because with lower \(v_S \), \(\Delta v_{IN} \) becomes comparatively more significant, while (8) neglects \(\Delta v_{IN} \). As \(\Delta v_{IN} \) becomes more significant, the power drawn by the SLCR becomes less and less than \(P_{MPP} \). Therefore, calculated \(t_s \) deviates more from measured \(t_s \) as \(v_S \) decreases.

Load Dump Loop: Measured and calculated load-dump loop \(t_o \) across load dump current \(i_{O(LD)} \) is shown in Fig. 24. Similarly, there exists a minimum for the \(t_o \) of the load-dump loop. The measured shortest load-dump loop \(t_o \) is about 31 \(\mu s \), so the maximum load-dump loop \(f_o \) is about 32 kHz.

D. Charging Profile

Fig. 25 measures the charging profile across 76 seconds to let \(v_B \) charge to \(v_{BD} \). \(C_P0 \)'s hysteretic window sustains and bounds \(v_O \)'s oscillation. \(v_{IN} \) is about 0.5 \(v_S \) with 30-mV \(\Delta v_{IN} \).

E. Efficiency

Fig. 26 measures the efficiency of the fast energy-harvesting SLCR prototype in harvest mode [25]. The harvest-mode efficiency \(\eta \) stays flat at the optimal level across load power \(P_O \) as mentioned in Section II, thanks to the constant energy packet scheme. \(\eta \) decreases as the maximum available power \(P_{MPP} \) decreases, given that the leakage loss of the MOSFET switches does not scale with \(P_{MPP} \). As \(P_{MPP} \) decreases, leakage loss becomes more dominant, and thus \(\eta \) plummets. The peak efficiency in harvest mode is around 77%.

Fig. 27 measures the efficiency of the fast energy-harvesting SLCR prototype in battery-assist mode [25]. Similarly, because of the constant energy packet scheme, the battery-assist mode efficiency \(\eta \) stays flat at the optimal level across load power \(P_O \) as well. As load power \(P_O \) scales down, the leakage loss of the MOSFET switches (which does not scale with \(P_{MPP} \)) similarly starts to dominate, so \(\eta \) drops. The peak efficiency in battery-assist mode is around 88% when bucking and around 59% when boosting. Switch \(M_B \)'s conduction resistance rises as \(v_B \) lowers, therefore the efficiency in boost mode is lower than that in buck mode. This paper focuses on control loop analysis but not on efficiency analysis. Detailed efficiency analysis is available in [25].
F. Relative Performance

Table III compares SoA CMOS SLCRs. The design in [17] is an energy-harvesting charger that incorporates a low dropout (LDO) regulator to supply the 1.2-V load. Its fundamental drawback is that if \(V_B \) is lower than \(V_O \), the design in [17] cannot supply the load.

The designs in [21–24] report 100 \(\mu s \)–2.5 ms \(t_R \). The design in [21] uses a clocked pulse frequency modulation (PFM) scheme, which adjusts switching frequency \(f_{SW} \) according to the load demand. But the design in [21] must wait two clock cycles before it increases \(f_{SW} \) to react to load dumps, which leads to a slow 2.5 ms \(t_R \) under a 180 \(\mu A \) rising load dump. 2.5 ms \(t_R \) is too slow given that \(t_{XFER} \) is 500 \(\mu s \)–7 ms. Similarly, in [22], the converter must wait until the clock’s falling edge before it reacts to rising load dumps. So, the resulting \(t_R \) is still 100 \(\mu s \). Designs in [23–24] use voltage mode pulse width modulation (PWM) in battery-assist mode. These designs need 2.2- or 10-\(\mu F \) \(C_O \) to establish a low-frequency dominant pole to stabilize the voltage loop. The drawback is that a higher \(C_O \) results in a longer time for \(V_O \) to build up high voltage on a small capacitor from which it bootstraps the SL afterwards. With this control, power supplies can respond faster to IoT sensor’s power demands.

V. CONCLUSIONS

This paper proposes a fast self-oscillating nested hysteretic CMOS switched-inductor charging regulator microsystem that harvest energy from resistive on-chip thermoelectric generators to power IoT sensors. The principle is to analyse the proposed hysteretic control as relaxation oscillators. This paper contributes detailed theory and insightful expressions on hysteretic loop stability, oscillation period, response time, and accuracy. This paper also contributes intuitive expressions that guide system level design (i.e., input, output, and storage capacitors, and hysteretic windows). A 180-nm CMOS prototype validates the proposed control. The measured response time is 9.6 \(\mu s \), which is 10–260× faster than prior arts.

ACKNOWLEDGMENT

The authors thank Drs. A. Blanco, O. Lazaro, N. Xing, J. Morroni, and Texas Instruments for their sponsorship.

REFERENCES

Table III: Relative Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>[21]</th>
<th>[22]</th>
<th>[16]</th>
<th>[17]</th>
<th>[18]</th>
<th>[19]</th>
<th>[20]</th>
<th>[21]</th>
<th>[22]</th>
<th>[23]</th>
<th>[24]</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tech. [nm]</td>
<td>180</td>
<td>500</td>
<td>180</td>
<td>180</td>
<td>28</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>210</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>(V_S) [V]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.05–1</td>
<td>0.2–0.8</td>
<td>0.06–0.18</td>
<td>0.1–0.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.15–0.5</td>
<td>0.15–0.5</td>
</tr>
<tr>
<td>(R_s) [M(\Omega)]</td>
<td>–</td>
<td>0.16</td>
<td>–</td>
<td>–</td>
<td>0.00053</td>
<td>0.00021</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>(V_D) [V]</td>
<td>1.0 and 1.8</td>
<td>0.4–1.4</td>
<td>1.0 and 1.2 V from LDO</td>
<td>100–1,3, and 1.6</td>
<td>0.5 and 1.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_o) [mA]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>10–10–3</td>
<td>< 2</td>
<td>0.001–60</td>
<td>–</td>
<td>0.01–2.5</td>
<td>0.01–2.5</td>
<td>0–10</td>
<td>0.0–1.6</td>
<td></td>
</tr>
<tr>
<td>(V_D) [V]</td>
<td>3.0</td>
<td>2.9–4.1</td>
<td>1.3</td>
<td>1.8</td>
<td>2.4</td>
<td>1.2</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>(C_B) [nF]</td>
<td>10000</td>
<td>4700</td>
<td>–</td>
<td>10000</td>
<td>–</td>
<td>10000</td>
<td>–</td>
<td>220</td>
<td>100</td>
<td>75</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>(C_O) [nF]</td>
<td>10000</td>
<td>10000</td>
<td>–</td>
<td>10000</td>
<td>2200</td>
<td>10000</td>
<td>–</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>(V_O) [mV]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>100</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.2</td>
</tr>
<tr>
<td>(v_{OE(D)}) [mV]</td>
<td>15°</td>
<td>25°</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>35°</td>
<td>35°</td>
<td>13°</td>
<td>25</td>
<td>28</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>(v_{OE(D)}) [mV]</td>
<td>50°</td>
<td>100°</td>
<td>–</td>
<td>–</td>
<td>40</td>
<td>35°</td>
<td>30°</td>
<td>77</td>
<td>72</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>(\Delta V) [mV]</td>
<td>0.18</td>
<td>20</td>
<td>–</td>
<td>–</td>
<td>1.0</td>
<td>4.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>(t_R) [(\mu s)]</td>
<td>2000</td>
<td>100°</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2500</td>
<td>100</td>
<td>9.6</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Max Efficiency [%]</td>
<td>83</td>
<td>95</td>
<td>87</td>
<td>87</td>
<td>89</td>
<td>90.2</td>
<td>84.4</td>
<td>86</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>FoM [s–2]***</td>
<td>180 k</td>
<td>200 M</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2.4 M</td>
<td>140 M</td>
<td>1.2 G</td>
<td>1.2 G</td>
<td>1.2 G</td>
<td></td>
</tr>
</tbody>
</table>

*Estimates from transient waveforms. **Estimates assuming \(V_S = 0.5V_B \), \(P_S = V_S^2/4R_S \).
***The system desires small \(C_O \), \(t_R \), and dynamic error \(v_{OE(D)} \) even under drastic \(\Delta V \), so the Figure of Merit (FoM) is defined as: \(\text{FoM} = \Delta V / (C_O \times t_R \times v_{OE(D)}) \).

