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Abstract: Frequency-response analysis is critical in circuit design. Frequency response
encodes crucial information, like gain, accuracy, bandwidth, response time, phase shift,
stability, and more. Unfortunately, existing methods are either algebraic and obscure or
approximations with inaccuracies. So applying them to more complex circuits is often
arduous or unreliable. This paper proposes recursive shunt-circuit transformations: a
simple, rigorous, and insightful analytical method for conceptualizing and designing
electronic circuits. The method asserts that (a) each equivalent capacitance shunts away its
parallel resistance past its RC frequency. This (b) decreases the gain (induces a pole) and (c)
changes the circuit. (d) The next dominant capacitance shunts its parallel resistance past
the next pole and so on until all remaining capacitances shunt their parallel resistances past
the poles they establish. The method also asserts that (e) bypass capacitances increase gain
(induce zeros) and (f) cross-amp capacitances couple stages and poles. By applying this
method and concepts, designers can (i) simplify an arbitrarily complex circuit into simpler
coupled/decoupled stages and (ii) determine and manage poles and zeros with insight.
This method was applied to design and analyze single- and multi- stage amplifier circuits
and results were benchmarked against traditional methods and NGSPICE simulations,
demonstrating its accuracy and broad applicability.

Keywords: frequency response; open-circuit approximation; short-circuit approximation;
shunt-circuit approximation; common-gate/source/drain transistor stages; common-
base/emitter/collector transistor stages; poles and zeros; time constants; Miller capacitance

1. Introduction: Frequency Response in Electronic Circuits
Electronic circuits have carved for themselves a very fundamental place in today’s

modern world. From the smallest mobile phone to the largest spaceships, everything runs
on semiconductor integrated circuit (IC) chips. These ICs have various electronic circuits
designed for specific applications.

The design of a circuit is typically done by investigating its poles and zeros, i.e., the
transfer function and frequency response. Figure 1 shows a general representation of an
electronic circuit transfer function in terms of the input and output signals and impedances,
i.e., AZ = vO/iI.
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Equations (1) and (2) show the transfer function of the system in terms of the DC gain
AS0 and its various negative, real-valued poles and real zeros in the s-domain.

AS = AS0
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and
s = i2πfO. (2)

The transfer function can also be written in terms of its gain and phase as:

AS = |AS|∠AS, (3)

where the gain is calculated by taking the modulus of the transfer function as:
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and the phase is calculated by summing the different arguments in the transfer function as:
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As can be seen from Equations (3)–(5), the poles decrease both gain and phase. Con-
trarily, the zeros increase the gain but add/subtract phase depending on whether they are
in-phase “non-inverting” zeros or out-of-phase “inverting” zeros. These will be discussed
further in Sections 4.3 and 5.3.

The frequency response of an electronic system is a useful tool in the designer’s belt
because it immediately makes evident the DC gain, bandwidth, minimum phase, poles and
zeros of the system, phase loss/recovery of up to 90◦ by each pole/zero, phase difference of
up to 90◦ between successive poles/zeros, gain plot slope after each pole/zero, etc. as seen
in Figure 2. Therefore, it simplifies the analysis and makes drawing reliable conclusions
pertaining to the gain, speed, and stability of the system intuitive and quicker.
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Because frequency response is such a useful tool, over the years, there has been a lot of
interest in plotting it [1–10]. The most notable methods to obtain the transfer function and
the frequency response are exact analysis using Kirchhoff’s laws (KCL and KVL) [11–13],
Miller’s decomposition [4,6,11,14–17], Huijsing’s shorting capacitance approximation [18,19],
method of time constants [5,8,16,17,20–27], Middlebrook’s generalized N-extra element theo-
rem [28–30], and graphical analyses [31,32].

All the above methods are rigorous and mathematically intensive, but except for [18],
lacking in insight. [18] develops insight for simpler higher order pole calculations but is
often incorrect due to its misguided intuition (i.e., incorrect approximation that capac-
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itances short beyond their poles). Therefore, there is a lack of an insightful method to
calculate frequency responses of complex circuits accurately and hence, designers turn
to numerical/symbolic simulations for reliable calculation of higher order poles/zeros to
make design decisions [33–36].

In this paper, the authors propose an insightful design-oriented circuit analysis method
to calculate poles and zeros and by extension, frequency responses accurately. They note
that capacitances do not short past their RC frequencies, rather, they shunt their equivalent
parallel resistances to reduce gain to the output and induce poles. They also remark that
bypass capacitances increase gain to the output and induce zeros and cross-amplifier
capacitances couple subsequent stages and poles.

They employ these and other fundamental concepts [1,37] to offer designers an intu-
itive and straightforward method for identifying and regulating circuit elements to achieve
the desired frequency response during circuit design. Thus, the proposed insightful design-
based analysis approach helps the designer conceptualize circuits, reduces his dependence
on circuit simulations, alleviates challenges, and enhances the efficiency of circuit analysis
and design by simplifying the analyses.

Section 2 introduces the readers to the tools required to apply the proposed method.
Sections 3–5 show the treatment of basic single-stage amplifier circuits. Section 6 depicts
the application of the method on multi-stage amplifier circuits. Section 7 comments on
the accuracy and benefits of the method. Section 8 reiterates the findings of the paper by
presenting the conclusions.

2. Proposed Frequency-Response Analysis
This section showcases and strengthens the four basic concepts the reader should

know to apply the proposed frequency response analysis. Wherever applicable, it also
mentions the concepts’ intended use in the method. It culminates in an integrated idea
which will be built upon in the following sections.

A short note on voltage/current naming convention: Uppercase variables with uppercase
subscripts are dc signals. Lowercase variables with lowercase subscripts are ac signals and
lowercase variables with uppercase subscripts are complete signals, i.e., ac riding on dc.

2.1. Shunt Circuits

A shunt circuit is a parallel combination of a signal source, RSH and CSH as depicted
in the left part of Figure 3. Any circuit can be represented as a shunt circuit in its Norton
equivalent. And every shunt circuit will have a RC pole frequency pSH (given by (7)) when
CSH

′s impedance equals RSH as seen in (6).
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Above pSH, the CSH bypasses RSH by presenting the input with a lesser impedance
path to ground and as a result, the effects of the resistance at the output begin fading.
Sufficiently above pSH (fO > 10pSH), RSH completely disappears. See Figure 3. Simply put,
CSH shunts parallel RSH past pSH or, RSH fades past pSH because:

|ZC| =
1

2πfOCSH

∣∣∣∣
fO≥pSH

≤ RSH, (6)



Electronics 2025, 14, 296 4 of 26

and
pSH =

1
2πRSHCSH

. (7)

The gain and phase error per pole/zero incurred by this simplification as compared to
an exact analysis is given by:∣∣∣AV(Error)

∣∣∣
fO=10pSH

=

∣∣∣∣ AG0RSHCSH

1 + sRSHCSH

∣∣∣∣− ∣∣∣∣ AG0

sCSH

∣∣∣∣ = AG0RSH√
101

− AG0RSH

10
≈ 0.5% (8)

and

∠AV(Error)

∣∣∣
fO=10pSH

= −tan−1
(

fO

pSH

)
−(−90◦) = −84◦ + 90◦ = 6◦. (9)

Therefore, this simplification is a very good approximation to exact analysis that helps
the designer gain insight into the circuit across frequency.

2.2. Feedback–Forward Split

Figure 4 shows an amplifier AG0 with a cross-amplifier capacitance CX between the
input and output nodes. At any given frequency, the capacitance CX can be written as an
equivalent two-port Norton input-Norton output circuit (refer middle third of Figure 4).
The split can be defined in terms of the Y-parameters as:{

i1 = y11vI + y12vO

i2 = y21vI + y22vO
. (10)
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Figure 4. Cross-amp capacitance: splitting feedback and forward effects.

The equivalent input impedance is calculated by removing the load’s feedback current
(i.e., vO = 0) as:

ZCI =
1

y11
=

vI

iI

∣∣∣∣
vO=0

=
1

sCX
. (11)

The forward effect is the current CX feeds to the unloaded (shorted) output (i.e., vO = 0):

iFW = vIy21 = vIAFW = vI

(
iFW

vI

)∣∣∣∣
vO=0

=
vI

ZCI
= vIsCX. (12)

Similarly, the equivalent output impedance is calculated by removing the source’s
forward effect (i.e., vI = 0):

ZCO =
1

y22
=

vO

iO

∣∣∣∣
vI=0

=
1

sCX
, (13)

and the feedback effect is the current CX feeds to the shorted input (i.e., vI = 0):

iFB = vOy12 = vOAFB = vO

(
iFB

vO

)∣∣∣∣
vI=0

=
vO

ZCO
= vOsCX. (14)

These feedback and forward effects of CX affect the higher order pole/zero calculations.
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2.3. Cross-Amp Capacitance Split

At any given frequency, the cross-amp capacitance CX in Figure 5 can also be split
into an equivalent input/output capacitance CXI/CXO. This capacitance draws the same
input/output current iXI/iXO as before, i.e., iI/iO.

By definition, the frequency-dependent voltage gain from the input to the output is:

AV =
vO

vI
. (15)

Therefore, the equivalent input conductance, i.e., the ratio of current through the equivalent
input capacitance to the input voltage is:

GXI =
iXI

vI
=

iCI − iFB

vI
=

vI/ZCI − vOsCX

vI
= (1 − AV)sCX ≡ sCXI, (16)

and similarly, the equivalent output conductance is:

GXO =
iXO

vO
=

iCO − iFW

vO
=

vO/ZCO − vIsCX

vO
=

(
1 − 1

AV

)
sCX ≡ sCXO. (17)

As seen in (16), the feedback effect increases the capacitance manyfold. The forward
effect in (17), in contrast, decreases the capacitance. Since the voltage gain considered is
frequency dependent, this cross-amplifier splitting concept, and the effects observed due to
it are exact and rigorous across frequency. This is the same as Miller’s effect and is used to
transform the circuit to its shunt-circuit equivalent.
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2.4. Recursive Shunt-Circuit Transformations

By the repeated application of concepts discussed in Sections 2.1–2.3, any circuit can
be represented as an N-stage shunt-circuit, as observed in Figure 6. By employing the
method of open-circuit time constants (OCTC) with the dominant pole approximation, p1

is approximately the pole from an arbitrary X1th stage (Xi is a general index for the stage
with the ith pole):

p1 ≈ 1
2πMaxN

k=1
{

Rk
′Ck

′} =
1

2πRX1
′CX1

′ . (18)
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Where Rk
′/Ck

′ denotes resistance/capacitance at the kth-stage in the 1st-pole shunt
circuit. In general, Rk

′M/Ck
′M denotes resistance/capacitance at the kth-stage in the

Mth-pole shunt circuit. It is important to note that Xi may not be the ith stage.
The circuit is now changed to reflect RX1

′ being shunted away. A new shunt-circuit
equivalent is calculated by merging the remaining capacitances and splitting the resulting
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cross-amp capacitances. p2 at the X2th stage (may not be the stage right after X1) is then
computed by applying OCTC and dominant pole approx. again, albeit without RX1

′:

p2 ≈ 1
2πMaxN

k=1,k ̸=X1{Rk
′′ Ck

′′ }
=

1
2πRX2

′′ CX2
′′ . (19)

Now the circuit is again changed to reflect the shunting away of RX2
′′′. Similarly,

the Mth pole of the circuit is given by applying OCTC and dominant pole approximation
without RX1

′(M−1), RX2
′(M−1). . .RX(M-1)

′(M−1) as:

pM ≈ 1

2πMaxN
k=1,k ̸={Xi}

{
Rk

′M
∣∣∣Ck

′M
} =

1
2πRXM

′MCXM
′M . (20)

Above this frequency, RX1
′M, RX2

′M. . .RXM
′M have been shunted away. Therefore, the

general idea thus becomes as follows: Apply suitable transformations to construct a shunt
circuit. Then calculate the p1 using OCTC and dominant pole approx. Now, shunt RX1

away and apply transformations to get another shunt circuit and repeat.
Note: The methodology proposed in this section applies most directly to analog

broadband circuits like op-amps, voltage references, linear regulators, comparators, data
converters, etc. whose sensitivity to on-chip and bond-wire introduced parasitic nH-pH
inductances is often negligible. Therefore, the analysis only considers parasitic capacitances
to calculate the poles/zeros (and frequency response).

3. Common-Gate Stage
Figure 7 shows a general single-stage common-gate circuit. This circuit has two

independent nodes vI and vO, and no cross-amp capacitances.
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3.1. Low-Frequency Circuit for Common-Gate Stage

Figure 8 shows the small-signal equivalent circuit. It is important to note that in
this and subsequent figures, for the sake of compactness, the symbol for M1 with a gray
background represents the low-frequency small-signal model (with the “–gmvgs” current
source ig1 and resistance rds1 absorbed in it, i.e., resistive and transconductive components
are included and capacitive and large-signal static dc components are excluded).

For low frequencies, the capacitances open and the circuit only presents resistive and
transconductive components. The equivalent input resistance of this circuit includes RS1,
the resistance looking up into the source of M1 and is given by:

RI = RS||RS1 = RS||
rds1 + rds2||RLD

1 + gm1rds1
≈ RS||

1
gm1

, (21)
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and the equivalent output resistance of the circuit includes RD1, the resistance looking
down into the drain of source degenerated M1 and is given by:

RO = RD1||rds2||RLD = (RS + rds1 + gm1rds1RS)||rds2||RLD ≈ rds2||RLD. (22)

Therefore, the low-frequency transimpedance gain is given by:

AZ0 =
vo

is
= RIAV0 = RIgm1RO ≈

(
RS||

1
gm1

)
gm1(rds2||RLD). (23)

3.2. First-Pole Shunt Circuit for Common-Gate Stage

At intermediate frequencies, the circuit is shown in Figure 8. Now, input and output
RC frequencies are compared to find the dominant pole.
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The input resistance RI
′ is same as RI calculated for AZ0 and is the parallel combination

of resistances connecting vi to ground:

RI
′ = RS||

rds1 + rds2||RLD

1 + gm1rds1
≈ RS||

1
gm1

. (24)

The equivalent input capacitance CI
′ is the parallel combination of capacitances con-

necting vi to ground:
CI

′ = CS + CGS1. (25)

Similarly, the equivalent output resistance RO
′ is the parallel combination of all the

resistances (to ground) at vo:

RO
′ = RLD||rds2||(rds1 + RS + gm1rds1RS) ≈ RLD||rds2. (26)

The equivalent output capacitance CO
′ is the parallel combination of all the capaci-

tances (to ground) at vo:

CO
′ = CLD + CGD1 + CGD2 ≈ CLD. (27)

Usually, fO is dominant because of much higher RO
′ in (26) yielding the highest RC

product. Therefore, p1 is given by:

p1 = fO =
1

2πRO
′CO

′ ≈
1

2π(RLD||rds2)CLD
. (28)

This p1 is same as what Miller’s approximation calculates.

3.3. Second-Pole Shunt Circuit for Common-Gate Stage

At frequencies much greater than p1, RO
′ fades away. Now, vi is the only node with a

resistance (refer (29)) and thus, produces p2 with CI
′′ in the input to output gain translation.

The new input resistance RI
′′ reflects the fading of RO

′ and is:

RI
′′ = RS||

1
gm1

||rds1 ≈ RS||
1

gm1
. (29)
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The new equivalent input capacitance CO” is:

CI
′′ = CS + CGS1. (30)

Therefore, p2 is given by:

p2 = fI ≈
1

2πRI
′′ CI

′′ ≈ 1

2π
(

RS|| 1
gm1

)
(CS + CGS1)

. (31)

3.4. Frequency Response for Common-Gate Stage

Figure 9 shows the Bode plot overlay of the frequency response calculated from
proposed method over the simulated response from NGSPICE. Recall that the circuit has
two independent nodes.
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As observed in the previous sections, each independent node has a pair of equivalent
shunt capacitance and resistance that produce a pole. Therefore, the Bode plot is expected
to, and observed, to have two poles, each losing up to 90◦ of phase. It is evident that the
calculated response tracks the simulated one closely.

Table 1 presents the 180-nm transistor model parameters used in the circuits in
Sections 3–6. As RI

′/RI
′′ is highly sensitive to RS, choosing a small RS of the order of

~1/gm helps emphasize the gm translation in it. Another factor motivating a small RS is the
mitigation of the source degenerating effect of RS on gm. Hence, a small RS was chosen to
aid in demonstrating the rigor of the method.

Table 1. Transistor Parameters Used in Simulations.

Parameters

ICS = 10 µA WCS = 20 µm L = 1 µm
ICD = 1 mA WCD = 5 mm LOL = 30 nm
ICG = 10 µA WCG = 50 µm KN

′ = 200 µA/V 2

COX
′′ = 7 fF/µm 2 λN/P = 2% KP

′ = 40 µA/V 2

RS(CS/CD) = 5 MΩ 1 RLD → ∞ Ω VDD = 5 V
fT(CS) = 470 MHz 2 fT(CD) = 290 MHz 2 fT(CG) = 280 MHz 2

VTN0 = |VTP0| = 0.4 V CJ0 = 50 fF tf = 100 ps
β0 = 100 A/A I2/4(CE-CD) = 200 µA VA = 50 V

IS = 1fA I3/4(CS-CG-CD) = 10 µA γ = 600 mV
1 RS used for the common-gate stage is 200 Ω; 2 Calculated as per fT =

gm
2π(CGS+CGD)

.

Note: For all the MOSFETs, body effect was neglected in Sections 3–5 for the sake
of simplicity and clarity. However, including it is straightforward by adding back gmb

to transconductances and resistances (refer Sections 6.1 and 6.2). The reader is encour-
aged to interact with the designed circuit, adapt the equations to their circuit and verify
their correctness.
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Table 2 in Section 7 shows the comparison results between this work and poles ex-
tracted from other methods.

4. Common-Source Stage
Figure 10 shows a generalized single-stage common-source circuit. This circuit has

two independent nodes vI and vO, and one cross-amp capacitance CGD1.
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4.1. Low-Frequency Circuit for Common-Source Stage

Figure 11 shows the small-signal equivalent circuit. Once again, M1 represents ig1

and rds1. Again, for low frequencies, the capacitances open. Therefore, the low-frequency
transimpedance gain is given by:

AZ0 =
vo

is
= RSAV0 = RS(−gm1)(rds1||rds2||RLD). (32)
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4.2. First-Pole Shunt Circuit for Common-Source Stage

At intermediate frequencies, the circuit in Figure 10 can be redrawn as Figure 11 by
employing the cross-amp capacitance splitting concept. The equivalent input resistance for
the circuit is:

RI
′ = RS. (33)

The equivalent input capacitance is the parallel combination of the capacitances
connecting the input node vi to ground, including the cross-amp capacitance that was split:

CI
′ = CS + CGS1 + CGD1I ≈ CS + CGS1 + CGD1(−AV0). (34)

Note: the cross-amp capacitance splitting has magnified CGD1 by a factor of AV0.
Similarly, the output resistance is calculated by considering all the resistances connect-

ing vo to ground as:
RO

′ = rds1||rds2||RLD. (35)

The equivalent output capacitance also includes the effect of the cross-amp capacitance
splitting. It is given by:

CO
′ = CGD1O + CGD2 + CLD ≈ CGD1 + CGD2 + CLD. (36)

Note: the cross-amp capacitance splitting yields negligible effect at the output for
circuits when voltage gain AV0 is much lesser than −1.
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Again, both the input and output RC corner frequencies are compared, and fI is found
to be dominant due to the highest RC product as a result of the capacitance multiplicative
effect at the input in (31). Therefore, p1 is equal to fI, as noted below:

p1 = fI ≈
1

2πRI
′CI

′ ≈
1

2πRS[CS + CGS1 + CGD1(−AV0)]
. (37)

This p1 is same as what Miller’s approximation calculates.

4.3. Second-Pole Shunt Circuit for Common-Source Stage

At frequencies much greater than p1, RI
′ fades away. Thus, the circuit is analyzed by

breaking CGD1 using the feedback-forward split from Section 2. Other concepts can be used
to redraw the circuit [4,6], but they are more mathematical whereas this tends to be simpler
and gives more insight into the circuit, and is thus, preferred.

Now, the first thing to do is calculate the zero. This is because the effect of the forward
component iFW of CGD1 is exactly accountable at this stage. iFW mixes with the current
source ig1 in M1 and results in a frequency dependent transconductance GM:

GM =
iFW − ig1

vI

∣∣∣∣
vo=0

= vi

(
sCGD1 − gm1

vi

)
= −gm1

(
1 − sCGD1

gm1

)
. (38)

This GM has a right half plane, positive, out-of-phase “inverting” zero. This zero
occurs when iFW of CGD1 competes with and overpowers ig1 of M1 (refers (38) and (39))
and as a result, inverts the transconductance from negative to positive values. Beyond this
zero, ig1 slowly fades away. Since the zero is drawing current from the system, it subtracts
up to 90◦ of phase.

iFW = visCGD1|fO≥zCS
≥ ig1 = vigm1 (39)

and
z1 = zCS =

gm1
2πCGD1

. (40)

Once the zero has been noted, the forward components can be dropped to redraw the
circuit. CGD1 can be rejoined to study the feedback effects affecting the second pole. Since
the forward and feedback effects are linear, they can be decoupled, analyzed individually
and later clubbed using superposition; this makes the analysis simpler. The circuit is given
by Figure 12.
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Figure 12. Equivalent second-pole common-source shunt circuit without forward components.

Figure 12 shows that CGD1, CS and CGS1 form a voltage divider from vo to vi. This
feedback effect tends to diode connect M1, as any change in vo changes vgs1 (and ig1). It
appears as an equivalent resistance at the vo given by:

RGM1 =
vo

ig1
=

vo

gm1vi
=

CS + CGS1 + CGD1

gm1CGD1
≈ CS + CGS1

gm1CGD1
. (41)

Thus, the equivalent output resistance has contributions from RLD, rds1, rds2 and the voltage-
divided gm resistance RGM1:

RO
′′ = RGM1||rds1||rds2||RLD ≈ RGM1. (42)
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This voltage divider also effects the output capacitance CO
′′ by appearing as an additional

capacitance at vo. A note on convention: ⊕ denotes a series connection, which means series
capacitances are mathematically parallel, i.e., CA ⊕ CB = (CACB)/(CA + CB).

CO
′′ = [(CS + CGS1)⊕ CGD1] + CGD2 + CLD. (43)

Therefore, p2 at the output node vo is given by:

p2 = fO ≈ 1
2πRO

′′ CO
′′ ≈

gm1CGD1

2π(CS + CGS1)CO
′′ . (44)

4.4. Frequency Response for Common-Source Stage

Figure 13 shows the Bode plot overlaying the frequency response calculated from the
proposed method over a NGSPICE simulation. The circuit has two independent nodes and
one cross-amp capacitance.
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Recall that each independent node has a pair of equivalent shunt capacitance and
resistance that produce a pole. Similarly, each cross-amp capacitance mixes with its tran-
sistor’s ig current source to produce a zero. Therefore, the Bode plot is expected to, and
observed, to have two poles and a zero.

Each pole is losing up to 90◦ of phase and the inverting zero is losing another 90◦ of
phase. It is evident that the calculated response tracks the simulated one closely. Table 2 in
Section 7 shows a comparison of poles/zeros extracted from the proposed method versus
the state-of-the-art methods.

5. Common-Drain Stage
Figure 14 shows a general single-stage common drain circuit. This circuit also has two

nodes and a cross-amp capacitance. Therefore, it is also expected to have two poles and a zero.
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Figure 14. Common-drain stage.

5.1. Low-Frequency Circuit for Common-Drain Stage

Figure 15 shows the small-signal equivalent circuit. M1 represents ig1 and rds1. The
low-frequency transimpedance gain is given by:

AZ0 =
vo

is
= RSAV0 = RS(gm1)

(
1

gm1
||rds1||rds2||RLD

)
≈ RS. (45)
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5.2. First-Pole Shunt Circuit for Common-Drain Stage

At intermediate frequencies, the circuit is drawn as Figure 15 by employing the cross-amp
capacitance splitting concept on CGS1. The equivalent input resistance for the circuit is:

RI
′ = RS. (46)

The equivalent input capacitance is the parallel combination of the capacitances connecting
the input node vi to ground, including the effect of the cross-amp capacitance that was split:

CI
′ = CS + CGD1 + CGS1I ≈ CS + CGD1. (47)

Similarly, the output resistance is calculated by considering all the resistances connecting vo to
ground. This includes the 1/gm1 resistance observed when looking up into the source of M1:

RO
′ =

1
gm1

||rds1||rds2||RLD ≈ 1
gm1

. (48)

The equivalent output capacitance also includes the effect of the cross-amp capacitance
splitting. It is given by:

CO
′ = CGS1O + CGD2 + CLD ≈ CGD2 + CLD ≈ CLD. (49)

Again, the input and output RC frequencies are compared, and fI is found to be dominant
due to the much higher RI

′ in (46) yielding a higher RC product. Therefore, p1 equals fI, as
noted below:

p1 = fI ≈
1

2πRI
′CI

′ ≈
1

2πRS(CS + CGD1)
. (50)

p1 is the result one would have obtained by applying Miller’s approximation. Note: An
important consequence of the cross-amp capacitance splitting concept is that in systems
with positive voltage gain, the equivalent input/output capacitance decreases. If AV is
approximately one, like in the present case, CXI/O disappears. Refers (16), (17), (47) and (49).

5.3. Second-Pole Shunt Circuit for Common-Drain Stage

At frequencies much greater than p1, RI
′ fades away. Thus, the circuit is analyzed by

breaking CGS1 using the feedback-forward split from Section 2.
Once again, the zero is calculated. It accounts for the forward effects of the cross-amplifier

capacitance, CGS1. iFW and ig1 in M1 mix to give a frequency dependent GM as:

GM =
iFW + ig1

vi

∣∣∣∣
vo=0

= vi

(
sCGS1 + gm1

vi

)
= gm1

(
1 +

sCGS1

gm1

)
. (51)

This GM has a left half plane, negative, in-phase “non-inverting” zero. This zero occurs
when iFW overpowers ig1 in magnitude (refers (51) and (52)) by providing the source with
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a lower impedance path to the output. Beyond this frequency, ig1 will slowly fade away.
Since the zero is feeding current into the system, it recovers up to 90◦ of phase:

iFW = visCGS1|fO≥zCD
≥ ig1 = gm1vi (52)

and
z1 = zCD =

gm1
2πCGS1

. (53)

Once the zero has been noted, the forward components can be dropped to redraw the
circuit as Figure 16. CGS1 is rejoined to study the feedback effects affecting the second pole.
The only node with a resistance is vo, so the pole appears at vo.
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Figure 16. Equivalent second-pole common-drain shunt circuit without forward components.

Here, CGS1, CS and CGD1 form a voltage divider from vo to vi. This feedback effect
tends to diode connect M1, as any change in vo changes vgs1 (and ig1). It appears as an
equivalent resistance at the vo given by:

RGM1 =
vo

ig1
=

vo

gm1vgs
=

CS + CGD1 + CGS1

gm1(CS + CGD1)
≈ CS + CGS1

gm1CS
. (54)

Thus, the equivalent output resistance has contributions from RLD, rds1, rds2 and the voltage-
divided gm resistance RGM1:

RO
′′ = RGM1||rds1||rds2||RLD ≈ RGM1. (55)

This voltage divider also effects the output capacitance CO
′′ by appearing as an additional

capacitance in parallel at vo. It is given by:

CO
′′ = [(CS + CGD1)⊕ CGS1] + CGD2 + CLD. (56)

Therefore, p2 at the output node vo is given by:

p2 = fO ≈ 1
2πRO

′′ CO
′′ ≈

gm1CS

2π(CS + CGS1)CO
′′ . (57)

5.4. Frequency Response for Common-Drain Stage

Figure 17 shows the Bode plot overlay of the frequency response calculated from pro-
posed method over the simulated response from NGSPICE. Each pole is losing up to 90◦

of phase and the non-inverting zero is recovering up to 90◦ of phase. It is evident that the
calculated response tracks the simulated one closely. Table 2 in Section 7 shows a comparison
of poles/zeros extracted from the proposed method versus the state-of-the-art methods.

Table 1 shows the design parameters used to simulate the circuit. RGM1 is noted to
be very sensitive to the source capacitance. Any appreciable CS will minimize the voltage
division to produce a ~1/gm result as a simplification of the form in (54). Therefore, the
circuit was designed without it.
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6. Clustered Poles
In complex designs, the N-stage shunt circuit often exhibits closely spaced poles. This

occurs when two or more capacitances shunt their respective parallel resistances less than a
decade apart; this spacing is insufficient for the capacitances to fully shunt their parallel
resistances. Consequently, the impedances interact as they are being shunted and the
successive pole calculation sees the effect of the resistance from the “previous pole”. In
such scenarios, the treatment is dependent on whether the components exhibiting the pole
are coupled or decoupled, as explained below.

6.1. Coupled Poles

A circuit has coupled stages when capacitances couple the shunt resistances con-
nected at its ends. Therefore, a cross-amp. capacitance couples the input and output
nodes it is connected across. The possibilities for such coupling appear in circuits with
common-source/emitter stages through the CGD or CBC/Cµ capacitance as shown in gray
in Figure 18, or common-drain/collector stages through the CGS or CBE/Cπ capacitance as
shown in gray in Figure 19.
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Figure 18. Coupling capacitances in common-source/emitter stages.
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For two coupled poles p1 and p2 set by the RC corner frequencies fI and fO with
fI < fO, fI is RC frequency at the input node and is given by:

fI =
1

2πRI
′CI

′ . (58)

Similarly, fO is the RC corner frequency at the output node and is given by:

fO =
1

2πRO
′CO

′ . (59)
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Since the individual RCs are close together, their impedances interact and the effect
of their RCs add. Therefore, the first pole, p1, is approximated by their combined time
constants as:

p1 ≈ 1
2π

(
RI

′CI
′ + RO

′CO
′) =

1
1/fI + 1/fO

= fI||fO. (60)

This means that the first pole is the parallel combination of the individual RC frequen-
cies and is lower than the lowest of the two. The higher pole (lower time constant), p2,
tends to be higher than the first pole in the ratio of the individual time constants and can
be mathematically expressed as:

p2 ≈ 1
2π

(
RI

′CI
′ + RO

′CO
′)RO

′CO
′/
(
RI

′CI
′) = p1

(
RI

′CI
′

RO
′CO

′

)
= p1

(
fO

fI

)
. (61)

Common Emitter–Common Drain Design Example

Figure 20 shows a general cascaded common emitter–common drain circuit. Since this
circuit has cross-amp capacitances between subsequent nodes (and a wire short between
o/p of Q1 and i/p of M3), this is an example of a coupled stage. Its transistor parameters
are given in Table 1. It has three independent nodes vI, vX, and vO and two cross-amp
capacitances (Cµ1, CGS3). Therefore, it is expected to have three poles and two zeros.
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voltage-divided gm at vx. First, the forward effect is accounted for to get the zero from the 
common-emiĴer stage as: 

zେ୉ =
g୫ଵ

2πCஜଵ
. (64)

Figure 20. Cascaded common emitter–common drain circuit.

1. Low-Frequency Common Emitter–Common Drain Circuit

Figure 21 shows the small-signal equivalent. Here, Q1 represents ig1, rπ1, and ro1 and
M3 represents ig3, rds3. The low-frequency transimpedance gain is given by:

AZ0 = RIAV0 = RS||rπ1AV10AV30≈ −RIgm1(ro1||R2)gm3

(
1

gm3
|| 1

gmb3
||rds3||R4

)
. (62)
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Figure 21. Small-signal model for the cascaded common emitter–common drain circuit.

2. First-Pole Common Emitter–Common Drain Shunt-Circuit

At intermediate frequencies, the capacitances come into play and the circuit is drawn
by employing the cross-amp capacitance splitting concept on CBC1 and CGS3. The poles
at each node are compared, and fI is found to be dominant due to the highest RC product
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because of the capacitance multiplicative effect at the input. Therefore, p1 equals fI, as
noted below:

p1 = fI ≈
1

2πRI
′CI

′ ≈
1

2π(RS||rπ1)
[
Cµ1 + CGD1(−AV10)

] . (63)

3. Second-Pole Common Emitter–Common Drain Shunt Circuit

At frequencies much greater than p1, RI
′ fades away. Thus, the circuit is redrawn as

Figure 22 using concepts from Section 2. Cµ1 now diode connects Q1 and will lead to a
voltage-divided gm at vx. First, the forward effect is accounted for to get the zero from the
common-emitter stage as:

zCE =
gm1

2πCµ1
. (64)Electronics 2025, 14, x FOR PEER REVIEW 16 of 26 
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Now, the RC product of RX
′′ and CX

′′ is computed. RX
′′ is given as:

RX
′′ = RGM1||ro1||R2 ≈ RGM1, (65)

where RGM1 is the voltage-divided gm resistance given by:

RGM1 =
Cπ1 + Cµ1

gm1Cµ1
≈ Cπ1

gm1Cµ1
. (66)

The equivalent capacitance at CX
′′ is:

CX
′′ =

[
Cπ1 ⊕ Cµ1

]
+ CGD3 + CGS3I=

[
Cπ1 ⊕ Cµ1

]
+ CGD3 + CGS3(1 − AV30), (67)

Then, the RC product of RO
′′ and CO

′′ is computed. RO
′′ is given by:

RO
′′ =

1
gm3

|| 1
gmb3

||rds3||R4. (68)

The net capacitance at CO
′′ is:

CO
′′ = CGS3O + CLD = CGS3

(
1 − 1

AV30

)
+ CLD, (69)

Then, the RC products of RX
′′CX

′′ and RO
′′CO

′′ are compared to find that they are
similar in magnitude with RO

′′CO
′′ being slightly larger (fO

′′ < fX
′′). Therefore, p2 in the is

to vo gain translation is given by:

p2 ≈ 1
2π(RO

′′ CO
′′ + RX

′′ CX
′′ )

= fO
′′ ||fX

′′ . (70)

4. Third-Pole Common Emitter–Common Drain Shunt Circuit

Typically, at frequencies much greater than p2, RO
′′ fades away. However, as

RO
′′CO

′′ ≈ RX
′′CX

′′ in this design, RO
′′ persists for p3 calculation. Thus, the circuit is
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redrawn as Figure 23 using concepts from Section 2. First, the forward effect is accounted
for to get the zero from the common-drain stage:

zCD =
gm3

2πCGS3
. (71)

Then, the next pole is calculated by employing the theory developed at the beginning of
this section as:

p3 ≈ 1
2π(RO

′′ CO
′′ + RX

′′ CX
′′ )RX

′′ CX
′′ /(RO

′′ CO
′′ )

= p2

(
RO

′′ CO
′′

RX
′′ CX

′′

)
= p2

(
fX

′′

fO
′′

)
. (72)
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5. Frequency Response for Common Emitter–Common Drain Circuit

Figure 24 shows the Bode plot overlay of the calculated poles/zeros from proposed
method over the simulated response from NGSPICE. Table 3 in Section 7 shows the calcu-
lated results.
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Common Source–Common Gate–Common Drain Design Example 

Figure 26 shows a general cascaded common source–common gate–common drain 
circuit. Since vX and vY do not have a shorting connection between them, the common-
source stage is decoupled from the common-drain stage. Its transistor parameters are also 
given in Table 1. It has four independent nodes vI, vX, vY, and vO and two cross-amp ca-
pacitances (CGD1, CGS5). Therefore, it is expected to have four poles and two zeros. 

Figure 24. Frequency response of the common emitter–common drain circuit.

As can be seen from Table 3 and Figure 24, since the successive poles/zeros are
within 1.5× of each other, they all act as clustered poles/zeros and influenced the circuit
analysis/design accordingly. The proposed method was successfully able to predict the
location of the poles by identifying the contributing element, enabling the circuit designer
to control them as per the requirements of the design.

6.2. Decoupled Poles

Whenever a circuit decouples two nearby shunt resistances, it has decoupled stages
which lead to decoupled poles. Therefore, the absence of a shorting connection (i.e.,
cross-amp capacitance) between the output of the first stage and the input of the next
decouples the successive stages. The only possibility of such decoupling in a circuit is with
a common-gate/base stage as shown in Figure 25.
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For two decoupled poles p1 and p2 set by the RC corner frequencies fI and fO with
fI < fO, the poles are given by the individual RC frequencies independent of the other. The
first pole becomes the one with the larger RC product. Therefore, p1 is given by:

p1 ≈ fI =
1

2πRI
′CI

′ . (73)

Similarly, p2 is given by the lower RC product as:

p2 ≈ fO =
1

2πRO
′CO

′ . (74)

Common Source–Common Gate–Common Drain Design Example

Figure 26 shows a general cascaded common source–common gate–common drain
circuit. Since vX and vY do not have a shorting connection between them, the common-
source stage is decoupled from the common-drain stage. Its transistor parameters are also
given in Table 1. It has four independent nodes vI, vX, vY, and vO and two cross-amp
capacitances (CGD1, CGS5). Therefore, it is expected to have four poles and two zeros.
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1. Low-Frequency Common Source–Common Gate–Common Drain Circuit

Figure 27 shows the small signal equivalent circuit (where the body terminals have
been dropped to favor clarity). Here, Mi represents igi, and rdsi. The low-frequency
transimpedance gain depends on the different resistances in the signal path from iS to vO.
The equivalent resistance at the drain of M1 is:

RD1 = rds1||
rds2 + rds3

1 + (g m2 + gmb2)rds2
≈ 2

gm2 + gmb2
. (75)

Similarly, the equivalent resistance at the drain of M2 is:

RD2 = rds3||(rds1 + rds2 + gm2rds1rds2) ≈ rds3. (76)

The equivalent resistance at the source of M5 is:

RS5 = rds4||
1

gm5 + gmb5
||rds5 ≈ 1

gm5 + gmb5
. (77)

Therefore, the low-frequency transimpedance gain is:

AZ0 = RIAV0 = RSAV10AV20AV50

= −RIgm1RD1gm2RD2gm5RS5 ≈ −2RSgm1rds3.
(78)
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2. First-Pole Common Source–Common Gate–Common Drain Shunt Circuit

At intermediate frequencies, the circuit is still given by Figure 27 with the capacitances
being finite. The RC corner frequencies at each node are compared, and it is found that
fI ≈ fY with RI

′CI
′ being slightly larger. The equivalent input resistance is:

RI
′ = RS. (79)

The equivalent input capacitance after application of the cross-amp capacitance split is:

CI
′ = CGS1 + CGD1(1 − AV10). (80)

The equivalent resistance at the node vy is the parallel combination of the output resistance
of source degenerated M2 and rds3. Usually, rds3 is much lesser and survives:

RY
′ = RD2 ≈ rds3. (81)

The equivalent capacitance at vy after application of the cross-amp capacitance split is:

CY
′ = CGD2 + CGD3 + CGD5 + CGS5(1 − AV50). (82)

Since fI ≈ fY with RI
′CI

′ being slightly larger, p1 equals fI, as noted below:

p1 ≈ fI =
1

2πRI
′CI

′ =
1

2πRS(CGS1 + CGD1(1 − AV10))
. (83)

3. Second-Pole Common Source–Common Gate–Common Drain Shunt Circuit

Typically, at frequencies much greater than p1, RI
′ fades away. However, as

RI
′CI

′ ≈ RY
′CY

′ in this design, RI
′ persists for p2 calculation. Thus, the circuit is still

given by Figure 27. First, the forward effect is accounted for to get the zero from the
common-source stage:

zCS =
gm1

2πCGD1
. (84)

Then, the RC product at node vy is computed to find the next pole as:

p2 = fY ≈ 1
2πRY

′CY
′ . (85)

4. Third-Pole Common Source–Common Gate–Common Drain Shunt Circuit

At frequencies much greater than p2, RI
′ and RY

′ fade away. Thus, the circuit is
redrawn as Figure 28 using cross-amp capacitance splitting for M5. Again, the RC products
are compared to find fO as the dominant pole. The equivalent output resistance in this new
shunt circuit is:

RO
′′′ ≈ RS5 =

1
gm5 + gmb5

. (86)
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The equivalent output capacitance after the application of cross-amp capacitance split for M5 is:

CO
′′′ = CGS5

(
1 − 1

AV50

)
+ C

GD4
+ CLD. (87)

Therefore, p3 is given by:

p3 = fO ≈ 1
2πRO

′′′ CO
′′′ . (88)
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5. Fourth-Pole Common Source–Common Gate–Common Drain Shunt Circuit

At frequencies much greater than p3, RO
′′′ fades away. Thus, the circuit is redrawn

as Figure 29 by using the feedback-forward splitting concept. First, the forward effect is
accounted for to get the zero from the common-drain stage as:

zCD =
gm5

2πCGS5
. (89)

Then, the equivalent resistance at vx is calculated as:

RX
′′′′ = RGM1||rds1||

1
gm2 + gmb2

||rds2 ≈ RGM1||
1

gm2 + gmb2
, (90)

where RGM1 is the voltage-divided gm resistance of M1 given by:

RGM1 =
CGS1 + CGD1

gm1CGD1
. (91)

The equivalent capacitance at vx includes the effect of the voltage divider established by
CGD1 and CGS1 in M1 and is given by:

CX
′′′′ = (CGD1 ⊕ CGS1) + CGS2. (92)

Therefore, p4 is given by:

p4 = pX ≈ 1
2πRX

′′′′RX
′′′′ . (93)
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6. Frequency Response for Common Source–Common Gate–Common Drain Circuit

Figure 30 shows the Bode plot overlay of the calculated poles/zeros from proposed
method over the simulated response from NGSPICE. Table 3 in Section 7 shows the calcu-
lated results.
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As can be seen from Table 3 and Figure 30, there is a double pole at 1 MHz which
is correctly predicted by the proposed method. Moreover, it identifies the contributing
component for each pole and gives the designer a way to insightfully control such clustered
poles reliably.

7. Benefits for Design
This section introduces the reader to the design perspective of an IC designer and the

appropriate analytical methods investigated for analyzing and designing electronic circuits.
It then compares them with the proposed methodology to validate its strength as compared
to the others. Finally, the section concludes with comments upon the benefit of using the
proposed methodology in addition to commercial circuit simulation tools.

7.1. Design Perspective

An IC design engineer is looking for small-signal circuit analysis methods which
allow the engineer to readily and insightfully conceptualize and analyze a circuit to predict
performance as reliably as commercial circuit simulation tools. The ability to conceptu-
alize a circuit and decompose it into its fundamental components, helps the engineer to
simplify and quicken the design process, since he is designing based on his conceptual
understanding, and not trial-and-error using simulations.

This implies that range of applicability, ease of application and computation time
are of utmost importance in these methods. Thus, Kirchoff’s circuit laws [11], Miller’s
decomposition [14], Huijsing’s capacitance short approximation [18], Andreani and Mattis-
son’s modification [20] to Cochrun-Grabel’s method [8] and graphical analyses [31,32] are
identified as the state-of-the-art (SoA) methods to compare against.

7.2. Direct Analysis

Applying Kirchoff’s laws gets the designer the circuit’s exact transfer function. How-
ever, it is a tedious and purely mathematical process. For complicated circuits, the transfer
function’s poles and zeros become unsolvable by hand.

A numerical solver can be used to aid the analysis. If the poles are clustered together,
the solver may return pairs of complex conjugate poles instead of real ones. In this case, a
dominant terms approximation can be used.

To apply the approximation, first, the denominator of the transfer function of the
circuit is written in the form of a polynomial as:

f(s) = ansn + an−1sn−1 + . . . + a1s + 1. (94)

According to this approximation, at extremely low frequencies (for p1), the linear and
constant terms dominate and p1 is given by:

f(s)|f→p1
≈ a1s + 1 = 0 ⇒ p1 ≈ − 1

2πa1
(95)
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At intermediate frequencies (e.g., p2), the quadratic and linear terms dominate the expres-
sion. This implies that p2 is given by the following equation:

f(s)|f→p2
≈ a2s2 + a1s = 0 ⇒ p2 ≈ − a1

2πa2
(96)

At even higher frequencies, the subsequent terms dominate and the calculation repeats.
Therefore, the pn becomes:

f(s)|f→pn
≈ ansn + an−1sn−1 = 0 ⇒ pn ≈ − an−1

2πan
(97)

Verification: Let f(s) = s4 + 57s3 + 361s2 + 555s + 250. The exact roots are −1, −1,
−5, and −50 rad/s. The approximation yields −0.45, −1.5, −6.3, and −57 rad/s. Note:
This approximation is extremely accurate when each pole is at least a decade away from
the others. It is a less accurate but still extremely useful estimate for the locations of
clustered poles. However, as explained above, obtaining the circuit’s transfer function
(or characteristic equation) for such an analysis becomes a daunting task as the circuit
complexity increases.

7.3. Graphical Analyses

As an alternative to the daunting direct analysis, [31] uses driving port impedances
combined with signal flow graphs to compute both, the poles, and zeros. While the process
is easy to follow and exact, it is mathematically involved and becomes abstruse with
increasing circuit complexity. In contrast, [32] develops insight into pole placement and
their root-loci but does not connect the poles with changes occurring in the circuit because
of them. Therefore, both these methods fail to equip the designer with a streamlined process
to control each pole individually.

7.4. Short-Circuit Approximation

Instead of applying the above methods, designers can use an amalgamation of meth-
ods [14,18,20] for finding the poles/zeros of a transfer function. Ref. [14] brings insight for
the lowest frequency pole. Ref. [18] introduces insight for higher poles but is misguided
due to the underlying short circuit assumption– it assumes that capacitances short past
their poles and diode-connect their corresponding transistors. This assumption produces
1/gm instead of the voltage-divided-gm suggested by (41) or (54) for RO

′′ and often leads
to errors in the final answer (refer common-source/drain pO in Table 2).

Zero calculation using [20] is exact but mathematically intensive due to the calculation
of multiple driving port time constants. It requires the designer to familiarize himself with
two uncommon and not-so-straightforward components: the norator and nullator. It is also
devoid of intuition into the circuit behaviour across the entire frequency spectrum.

To emphasize, the SoA methods either ascertain only the poles or zeros or calculate
both but are tedious to apply on complicated circuits. Either way, they lack the beauty
and simplicity of insight. Ref. [18] is a good compromise as it is the only insightful
method (resulting in a simpler design process for larger, complex circuits) amongst the SoA.
However, it is limited to the poles and often yields incorrect results.

7.5. Proposed Shunt-Circuit Approximation

The proposed method to calculate frequency response surpasses the SoA by not
needing complex mathematical operations regardless of the circuit’s complexity. It offers
the design engineer insightful and accurate circuit analysis to predict both poles and zeros
across the frequency range while retaining simplicity without losing sight of the circuit’s
functionality. It employs a shunt circuit approximation because, capacitances do not short
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past their poles, instead, their parallel resistances fade. It swiftly makes evident the circuit
element responsible for each pole/zero and provides a way to control/account for it in
subsequent analyses during circuit design. To reiterate, the proposed method is a physical
model (not a mathematical one) based on intuition which is used to conceptualize, analyze
and design circuits and not simulating them.

Table 2 compares the poles/zeros (rounded off to two significant figures) calculated
using SPICE simulations, Kirchoff’s circuit laws (direct analysis), the SoA comprising of the
combination of methods from [14] (p1), [18] (p2) and [20] (z1), and the proposed method.
The extraction of poles/zeros from the simulation was straightforward. p1 is the frequency
where the gain drops by 3 dB below the dc value (alternatively, phase loses 45◦ from the
corresponding dc value) and p2 is the frequency where the phase loses 90◦ (additional 45º
from p1 and 45º from p2) from p1

′s phase value. For an inverting zero (e.g., zCS), z1 is the
frequency where it loses 90◦ (additional 45◦ from p2 and 45◦ from z1) from p2

′s phase. On
the other hand, for a non-inverting zero (e.g., zCD), z1 is the frequency where it partially
cancels up to 45◦ of p2

′s additional loss to return to the same phase value as that of p2.

Table 2. Simulated Versus Calculated Single-Stage Amplifiers.

Stage Pole Zero Sim. Direct SoA Error with Sim. This Work Error with Sim.

CG
pO 5.0 MHz 4.9 MHz 4.9 MHz −2.5% 4.9 MHz −2.5%
pI 3.6 GHz 3.6 GHz 3.6 GHz +1.9% 3.6 GHz +1.9%

CS
pI 10 kHz 10 kHz 10 kHz −1.9% 10 kHz −1.9%
pO 34 MHz 35 MHz 310 MHz +810% 34 MHz −2.6%
zCS 11 GHz 11 GHz 11 GHz +0.9% 11 GHz +0.9%

CD
pI 30 kHz 30 kHz 31 kHz +3.3% 31 kHz +3.3%
pO 3.1 MHz 3.0 MHz 58 MHz +1800% 3.0 MHz −3.2%
zCD 280 MHz 300 MHz 300 MHz +7.1% 300 MHz +7.1%

Since the common-gate circuit did not have a cross-amplifier capacitance, there were
fewer approximations in the equations and all the three methods resulted in very similar poles.

For all the methods, the zero expressions were identical to each other. The primary
reason being that Kirchoff’s circuit laws and the method in [20], are exact. As are the
expressions derived in this work due to complete consideration of the forward effects.

As can be seen from Table 2, the direct analysis gets the closest results to the simulation.
This work provides an alternative close approximation to the simulation that is quick
and easy to use and provides insight into actual changes in the circuit. Therefore, for
demonstrating the strength of the method for multi-stage amplifiers, it will be compared to
results obtained from direct analysis.

Table 3. Calculated Multi-Stage Amplifier Examples.

Stage Pole Zero Direct SoA This Work

CE-CD

pI 4.9 MHz 5.0 MHz 5.0 MHz
pO 230 MHz 1 450 MHz 280 MHz
pX 370 MHz 1 950 MHz 390 MHz

zCD 800 MHz 800 MHz 800 MHz
zCE 46 GHz 46 GHz 46 GHz

CS-CG-CD

pI 500 kHz 1 1.0 MHz 1.0 MHz
pY 2.0 MHz 1 17 MHz 1.0 MHz
pO 60 MHz 70 MHz 70 MHz
pX 680 MHz 730 MHz 680 MHz

zCD 2 GHz 2 GHz 2 GHz
zCD 20 GHz 20 GHz 20 GHz

1 Calculated using dominant terms method.



Electronics 2025, 14, 296 24 of 26

As can be seen from Table 3, this work is very close to the direct analysis even for
multi-stage circuits with clustered poles. As shown in Section 6, any large circuit of arbitrary
complexity can be decomposed into a combination of the three primitive single-stage tran-
sistors stages presented in Sections 3–5. With the analyses formally discussed above, any
combination of the primitive transistor stages can be completely analyzed and understood.

Once a large circuit is decomposed into its primitive stages (fundamental components),
using the method proposed in this work, the design engineer can accurately predict the
frequency response during circuit inspection. The accurately calculated poles and zeros
streamline the design process and help the designer achieve the desired response in the
preliminary design without multiple iterations. With the insight thusly gained, the design
engineer can minutely control poles and zeros of any CMOS and bipolar technology circuit
without having to rely solely on commercial circuit simulators or symbolic circuit analysis
tools for making design decisions. Thus, the method can be very easily used to insightfully
understand and design frequency responses of large circuits of arbitrary complexity simply.

Often, symbolic circuit analysis tools used to calculate poles/zeros produce complex
equations that are hard to grasp and simplifying them might lead to significant pole/zero
displacements from the original locations [33]. Circuit simulators, used to bridge this gap, are
inadequate because they depend on numerical factors the engineer may not fully understand–
this leads to circuits designed by “trial and error” as opposed to insight. This work enables
the engineer to effectively address the aforementioned gap with insight. Since the preliminary
design has the desired frequency response, supplementing it with simulations leads to a
higher quality design with fewer iterations in the transistor parameters, i.e., the proposed
method simplified the analysis and design of the circuit.

After the design engineer has designed a circuit, it needs to be stabilized. Typically,
for analog broadband circuits considered in this paper, both open loop and closed loop
(with negative feedback) stability are ensured using either dominant-pole compensation or
pole-splitting compensation (Miller’s compensation and its variants). This can be achieved
using algebraic manipulation [38,39] to extract parameter values, graphical methods [32,40]
to vary parameters until desired specifications are met, or solving for phase margin [41] to
check stability while varying parameters.

Apart from [41], none of the other methods are as straightforward to employ with
increasing circuit complexity. In a similar vein as [41], using the proposed method to predict
the poles and zeros, designers can very easily check the stability of the circuit by inspecting
the phase margin. Since the proposed method also equips the designer with the insight to
control the poles and zeros, tweaking them (in the feedback network or otherwise) to meet
specifications becomes a trivial matter. Hence, the proposed method is a design-oriented
analytical method which organically lends itself to also simplifying feedback control of circuits
regardless of circuit complexity.

8. Conclusions
This paper proposes an insightful design-based frequency response analysis of transis-

tor circuits that also serves as the reference analysis for all single-stage amplifier primitives.
The biggest challenge in a frequency response analysis is the lack of an easy, conceptual
method to deduce the higher order poles. State-of-the-art (SoA) methods like short-circuit
approximations in [18] are applicable but lead to a tedious procedure with often incorrect
results. The proposed design-oriented analytical method outperforms the SoA by its ability
to predict (without abstract math) and control circuit components that establish poles and
zeros in a circuit. It recognizes that shunt capacitances reduce gain to the output, thereby
inducing poles. Similarly, bypass capacitances increase gain to the output and induce
zeros in the circuit. The proposed method also notes that resistances fade when their
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parallel capacitances shunt them past their respective RC frequencies. As the resistances
fade, the circuit changes and this method equips the design engineer to track all such
changes across the entire frequency spectrum while ensuring comprehensive and rigorous
results without sacrificing generality. Further, this work also identifies that cross-amplifier
capacitances couple subsequent stages and lead to coupled poles in a circuit. By applying
this method, the designer can recognize capacitances that cause poles/zeros as well as
the coupled/decoupled stages in the circuit during inspection itself. It also provides the
engineer with insight into how poles/zeros alter gain in circuits.

This was demonstrated by applying the methodology to design and analyze single-
stage common-gate, common-source and common-drain stages and multi-stage cascaded
common emitter–common drain and common source–common gate–common drain ampli-
fiers. The results from the method were compared with those from established methods in
the literature and NGSPICE simulations. The results agreed with the simulated values in a
relatively tight ~5% error band as opposed to 800%+ error in the SoA. This establishes it as
an invaluable tool for designers thanks to the insight provided and easier design and con-
trol of a stable circuit facilitated, as opposed to designing using abstract algebraic equations
which hide concepts and make individual effects of components harder to decipher.
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