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Abstract: Digital low-dropout (LDO) regulators are popular in research today as compact power
supply solutions. This paper provides a unique approach to analyze digital LDO feedback mechanics
and stability, to reduce voltage ripple and extend operating speed over the state-of-the-art. A novel
error-subtracting counter is proposed to exponentially improve the response time of any digital LDO,
to keep the loop stable outside the typical operating limits, and to increase power-supply rejection
(PSR). This leverages the fact that digital LDOs are fundamentally one-bit relaxation oscillators in
steady-state. Theory and simulations show how the analog-to-digital (ADC) and digital-to-analog
converters (DAC) in these systems affect stability. When compromised, a digital LDO produces
uncontrolled sub-clock oscillations at the output that the proposed error-subtracting counter removes.

Keywords: digital control; ADC; stabilization; regulation; power-supply rejection; fast transient;
limit-cycle oscillation; noise; DVFS; SoC

1. Introduction: On-Chip Power Supplies for Digital Systems

Digital systems are pervasive due to their inherent noise tolerance. As devices shrink
and more functionality is packed into a limited space, power demands increase, and
engineers turn to Dynamic Voltage and Frequency Scaling (DVFS) [1]. Each functional
block within a System-on-Chip (SoC) requires an optimized supply voltage, leading to the
use of local Point-of-Load (PoL) supplies. LDOs stand out here due to their compactness
and low-noise outputs when compared to Switched-Mode Power Supplies (SMPS).

LDOs take in a supply voltage from an off-chip SMPS and convert it to a lower level
that is tailored for each SoC block. They provide a fixed output voltage free from noise
with high Power-Supply Rejection (PSR) [2], which is critical for sensitive analog circuits
such as ADCs, oscillators, amplifiers, filters, and mixers. However, with noise-tolerant
CMOS digital loads, PSR may be sacrificed to obtain a lower LDO input to output voltage
for higher efficiency, especially at low input voltages [3]. The Digital Low-Dropout (DLDO)
regulator [4] is designed with this in mind. DLDOs need to be internally stabilized for com-
pact on-chip applications, so their internal integrating counter, as discussed further below,
sets the loop’s dominant pole. Compared to analog LDOs [2,5] or analog-digital hybrid
LDOs [6–8], a DLDO has a lower input-to-output voltage difference, improving efficiency
as well as lowering the output resistance. Consequently, with lower output resistance, the
non-dominant output pole shifts to higher frequencies, improving stability with less area
than an output-stabilized LDO. Another feature is that its quiescent power consumption is
proportional to the frequency of its clock, making efficiency control straightforward.

Figure 1 shows a typical application. In an SoC with several tens of cores [7,9] or in
data center applications, with each core requiring a separate supply, an analog LDO is not
easy to integrate since a separate off-chip output capacitor is required to stabilize each LDO,
making board routing impractical. A hybrid LDO is not applicable either since it requires a
large silicon area to integrate both analog and digital control loops, making it hard to place

Electronics 2024, 13, 5033. https://doi.org/10.3390/electronics13245033 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13245033
https://doi.org/10.3390/electronics13245033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-8930-8240
https://doi.org/10.3390/electronics13245033
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13245033?type=check_update&version=1


Electronics 2024, 13, 5033 2 of 20

near the load. In conclusion, simple DLDOs are better-suited on-chip as they do not need
additional loops or capacitors.
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Figure 1. Multi-CPU system with Digital LDOs. 

2. Digital LDO 
The application considered supplies a load with an output voltage vO from 0.5 to 1.1 

V and load current iLD ranging from 1 to 50 mA. The input voltage vI from an SMPS (or 
battery) may vary between 0.6 and 1.2 V. The on-chip output capacitor CO is chosen to be 
100 pF (for transient response purposes only). A 1 MHz system clock is used to align with 
the bandwidth of typical analog LDOs. Neglecting LDO internal power consumption, 
worst-case efficiency works out to 42% at maximum input-to-output voltage. 

Most prior works specify operation at a partial or narrow load current, input voltage, 
or output voltage ranges. As a result, the power device, which is made up of an array of 
segments, is within manageable ranges—up to a few hundred devices in parallel. How-
ever, in practical scenarios, an LDO must operate at larger load current ranges over the 
entire input voltage range. This is the first work to show such a system, which brings 
forward an issue in the basic DLDO architecture—the power device array becomes very 
large; with thousands of devices needed for the above-mentioned modest voltage and 
current range. With such a large array needed for full resolution, response time is ex-
tremely slow, requiring GHz speed clocks for reasonable performance, thus increasing 
power consumption beyond practical values. The technique presented in this work alle-
viates this trade-off to bring DLDOs into the realm of practicality. 

Figure 1. Multi-CPU system with Digital LDOs.

Sections 2–4 explore the features and frequency response of DLDO blocks. The analysis
provided here makes it easier to design and validate DLDO systems when compared to the
incomplete and difficult-to-follow explanations in the state-of-the-art since it discusses the
parasitic effects in a baseline DLDO, which can later be applied to more complex systems. A
DLDO’s oscillatory behavior is analyzed in Section 5, and a novel technique is introduced,
using an error subtracting counter. With this proposed technique, the addition of a simple
digital circuit enables designers to exponentially increase the response time of the prior
all-digital compact DLDOs [10] without compromising on stability. This is irrespective of
the locations of parasitic poles and zeros in the system, which makes the design all-stable.
The higher response speed may be traded for higher DC regulation accuracy. Additionally,
PSR has typically been poor in prior DLDOs due to the lower output resistance. The
proposed circuit also qualitatively improves the PSR of DLDOs at lower frequencies as an
added bonus, and this is discussed in Section 6, followed by conclusions.

2. Digital LDO

The application considered supplies a load with an output voltage vO from 0.5 to
1.1 V and load current iLD ranging from 1 to 50 mA. The input voltage vI from an SMPS
(or battery) may vary between 0.6 and 1.2 V. The on-chip output capacitor CO is chosen to
be 100 pF (for transient response purposes only). A 1 MHz system clock is used to align
with the bandwidth of typical analog LDOs. Neglecting LDO internal power consumption,
worst-case efficiency works out to 42% at maximum input-to-output voltage.

Most prior works specify operation at a partial or narrow load current, input voltage,
or output voltage ranges. As a result, the power device, which is made up of an array of
segments, is within manageable ranges—up to a few hundred devices in parallel. However,
in practical scenarios, an LDO must operate at larger load current ranges over the entire
input voltage range. This is the first work to show such a system, which brings forward an
issue in the basic DLDO architecture—the power device array becomes very large; with
thousands of devices needed for the above-mentioned modest voltage and current range.
With such a large array needed for full resolution, response time is extremely slow, requiring
GHz speed clocks for reasonable performance, thus increasing power consumption beyond
practical values. The technique presented in this work alleviates this trade-off to bring
DLDOs into the realm of practicality.

2.1. Operation

A generic DLDO is depicted in Figure 2. The power pass device is an array of equal-
sized (linearly weighted) pMOS transistors MPO used as switches in triode. It is controlled
by a feedback loop that sets the output voltage vO by turning devices on or off. The loop
consists of the load, the output capacitor CO, feedback resistor divider RFB1,2, comparator
CPE, a counter CNTR [10], and decoder logic DEC, followed by an inverting driver DRV
driving MPO. A reference voltage vR and a clock fCLK are also needed.



Electronics 2024, 13, 5033 3 of 20

Electronics 2025, 14, x FOR PEER REVIEW 3 of 21 
 

 

2.1. Operation 

A generic DLDO is depicted in Figure 2. The power pass device is an array of equal-
sized (linearly weighted) pMOS transistors MPO used as switches in  triode. It is con-
trolled by a feedback loop that sets the output voltage vO by turning devices on or off. The 
loop consists of the load, the output capacitor CO, feedback resistor divider RFB1,2, compar-
ator CPE, a counter CNTR [10], and decoder logic DEC, followed by an inverting driver 
DRV driving MPO. A reference voltage vR and a clock fCLK are also needed. 

vO
CPE

vI

MPO1

CO

RFB1

RFB2

CNTR

fCLK

vFB

N

D
EC dG

...
.. ...

vG1

vGM

vEO

DRV1

..

RC

RLD

DRVM

MPOM

CLD

dADC

vR

ADC

LD-FB

DAC

iPO

iLD

RPO

 

Figure 2. Digital LDO Composition. 
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The feedback loop sets vO as follows: If vO falls below the desired target, say due
to a load disturbance, the feedback voltage vFB becomes lower than the reference voltage
vR. The comparator detects this and sets the error output vEO high (or 1). The counter
responds by increasing the stored binary digital word dADC by 1, the Least Significant
Bit (LSB). The decoder translates this word to a proportional number of turned-on power
devices using logic gates, which goes up by 1 as well. Each pMOS device has a triode
channel on-resistance when used as a switch [11]. Here, vSG is source-gate voltage, vSD
is source-drain voltage, vTP is threshold voltage, KP

′ is transconductance parameter, and
W/L is aspect ratio:

RLSB =
1

KP
′
(

W
L

)(
vSG + vTP − vSD

2

) =
1

KP
′
(

W
L

)(
vI + vO

2
+ vTP

) (1)

By activating one additional parallel power device, total pass device current iPO
increases by one LSB value iLSB:

iLSB =
vSD

RLSB
=

vI − vO

RLSB
, (2)

effectively reducing resistance RPO in the power delivery path:

RPO =
RLSB

dADC
. (3)

The extra current raises both vO and vFB. This process occurs once every clock cycle
and continues until vFB matches vR and power device current iPO matches load current iLD:

iPO = dADCiLSB. (4)

The feedback resistors set the ratio βFB between vO and vFB, enabling the choice of vO
to be independent of the typically fixed vR:

βFB =
vFB

vO
=

RFB2

RFB1 + RFB2
≈ vR

vO
. (5)

A similar process occurs when vO exceeds the target. vFB is above vR, so the counter
counts down to turn off power devices to lower iPO and bring vO back into regulation.
Note that iLSB is chosen based on minimum load current iLD at maximum input-to-output
voltage difference, which sets a single LSB power device switch’s resistance RLSB. To prevent
metastability errors in this scheme, it is advisable to trigger the counter after the comparator
makes its decision. For instance, after half a clock cycle for clocked comparators [12,13].
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Note that process-voltage-temperature (PVT) variations do not significantly affect the
simple system in Figure 2 since the control is implemented synchronously. The clock is
generated by a feedback system such as a phase-locked loop, and the controller is in the
digital domain with large margins. The power device array MPO is the only section with
PVT sensitivities via process variations in transconductance parameter KP

′, aspect ratio
(W/L), and threshold voltage vTP, since these directly affect output resistance, output pole,
DAC gain/phase, and unity gain-bandwidth frequency (f0dB), as explained further below.
This sensitivity is minimized by having a unit (equally) weighted MPO to improve DAC
linearity, ensuring robust PVT performance when compared to analog and hybrid LDOs.

2.2. Loop Model

A DLDO in the simplest form is shown in Figure 3. It consists of an ADC, a DAC, and
loaded feedback (LD-FB). The ADC, driven by a clock, compares vR and vFB to output a
proportional digital word dADC. The ADC considered here is made up of a comparator and
a binary counter. However, alternative architectures exist, such as a flash ADC [14], which
needs higher power and area; a Successive-Approximation Register (SAR) ADC [15,16],
requiring high power for a low offset comparator and large capacitive DAC; a delay-based
ADC [17], which is susceptible to PVT variations causing instability; or a sub-ranging
ADC, which is harder to design, and hence these are not considered here. Additionally, the
comparator CPE may operate in continuous time, which needs higher power, or be clocked,
having lower gain and higher kickback noise, but is preferred for low power.
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The DAC outputs a current proportional to ADC output word, or dADC. Within the
DAC, the decoder converts dADC into a thermometer code dG for the gate driver (a string
of 0s and 1s with the number of 1s equal to the binary value), and the driver controls the
large power device array MPO. MPO may be in a linearly or exponentially (e.g., W/L size
in powers of 2) weighted array [4], with pMOSs biased in the triode region (low vI to vO
difference) for efficiency. Linear (equal) weighting is preferred as opposed to binary [18]
to avoid DAC non-linearity (manufacturing mismatches causing missing codes) and MSB
transition spikes. However, this does complicate the decoder and driver, which need
significant area and may become a bottleneck to reducing area. Note that if vO is lower
than MPO’s threshold voltage vTP, MPO turns on in saturation, pulling output pole lower in
frequency.

The loaded feedback block includes the load and the feedback. It receives the DAC
current iPO to generate a voltage vFB for the ADC. The load is modeled here in Figure 2
as a combination of resistance RLD (often in parallel with a current source), the output
capacitor CO with its Equivalent Series Resistance (ESR) RC, a bypass load capacitor CLD,
and the feedback divider resistors RFB1 and RFB2. The control signal traversing through the
feedback loop experiences a loop gain ALG, defined as the product of the gains of the ADC,
DAC, and LD-FB blocks, denoted by AADC, ADAC, and ZFB, respectively:

ALG = AADC × ADAC × ZFB. (6)

Loop gain is analyzed and verified in the following sub-sections through simulation
using a replica loop to bias the loop broken for testing [19], and then the frequency response
of these sub-blocks is analyzed [5].
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All following analyses rely on SPICE for low ADC count models and shift to Verilog-A
models for higher count to simplify simulations. Specifically, the comparator, counter, and
decoder are modeled with behavioral SPICE blocks such as sampler, delay, counter, and
behavioral voltage functions, and the rest are implemented with circuit-level models. The
behavioral sources are then translated to Verilog-A code to enable scaling to a higher ADC
full-scale count. This can then be easily fed to a synthesis tool in the implementation phase.

Digital systems are usually analyzed in discrete-time (z-domain). However, for
mixed-signal feedback systems such as the Digital LDO, it is advantageous to analyze in
continuous-time (s-domain) due to the following reasons:

1. Z-domain analysis masks effects beyond clock frequency, which might hide effects
that show up when the clock is varied in DVFS;

2. There already exists a multitude of prior art techniques outlining ways to improve
system stability that use s-domain analysis that may be easily leveraged by a designer
when compared to the more arcane z-domain analysis;

3. S-domain analysis is more intuitive since it directly relates to component-level effects
from resistors, capacitors, etc. that are easily converted to ohmic translations to avoid
solving non-intuitive difference equations;

4. Z-domain analysis assumes a zero-order-hold approximation for DACs, with voltages
and currents assumed to be fixed in between clock cycles, so this cannot be extended
to slow clock systems or for power supply ripple analysis.

For these reasons, this paper takes the s-domain approach, which has not been pre-
sented for Digital LDOs in prior art.

2.3. Loaded Feedback Translation

The low-frequency LD-FB gain is a function of LDO output resistance RO and βFB.
The ‘0’ in the gain subscript refers to low-frequency gain:

ZFB0 = ROβFB = [RPO || (RFB1 + RFB2) || RLD] βFB. (7)

RO depends on MPO’s resistance RPO, the load resistance RLD, and the feedback
resistors RFB1 and RFB2. The output capacitor CO provides charge on demand to the load
until the feedback loop can respond to vO changes, helping with LDO transient response.
Typically, CO is selected to minimize the vO droop within a specified time at the worst-case
load current step. CO and RO form an output pole pO (CO trades response speed with
phase margin):

pO ≈ 1
2π[RPO || (RFB1 + RFB2) || RLD](CO + CLD)

≈ 1
2πROCO

. (8)

The pole introduces a phase delay ∠ZFB and lowers the magnitude of loaded feed-
back’s gain |ZFB|. Below the output pole frequency pO, the gain |ZFB| changes little. At
pO, it experiences a 3 dB reduction, and beyond pO, it decreases by 20 dB per decade (10×)
increase in frequency. Loaded feedback’s phase delay ∠ZFB follows an inverse tangent
function and corresponds to a 45◦ additional delay at pO and up to a 90◦ delay at much
higher operating frequencies fO. Notably, pO varies with power device resistance RPO and
consequently with iPO and the ADC count dADC.

A large on-chip CO brings a large ESR RC. This ESR limits CO
′s drop in impedance at

higher frequencies, creating a zero zC. This is typically at a frequency higher than pO [20]:

zC =
1

2πRCCO
. (9)

At these frequencies, zC cancels the effects of gain drop and delay from pO. A bypass
load capacitor CLD may be intentionally added [5] to reduce the transient droop in vO
caused by RC, which adds a load pole to the system. The capacitance associated with the



Electronics 2024, 13, 5033 6 of 20

load may also be modeled within this pole. If neither is present, as is assumed here, the
capacitance is dominated by the parasitic drain-body capacitance of the power device MPO
and varies with the count dADC, as in the frequency response of Figure 4.
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CLD reduces the output impedance beyond the load pole pLD:

pLD ≈ 1
2πRCCLD

. (10)

In any LDO, output pole pO exhibits significant variation with iPO and load current
iLD. In a DLDO, it is additionally dependent on input voltage vI through power device
LSB resistance, and this effect is missed by most DLDO designers. Output resistance RO
also varies with vI since DLDO power device resistance RPO is low and comparable to load
resistance RLD. These dependencies are depicted in Figure 5 and must be accounted for
while designing the power device LSB size and M, the full-scale ADC count (total number
of power device sections).
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3. ADC Response
3.1. Flash ADC

Sampling effects are illustrated with the simplest ADC, the flash. It converts an analog
voltage to an equivalent digital code instantaneously, using an array of 2N comparators.
Each comparator has one LSB difference in their references, and together they produce a
thermometer code at the output. Error voltage vE is the difference in the ADC′s inputs vR
and vFB:

vE = vR − vFB. (11)
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Sampling period tCLK and ‘N’ quantization levels set the ADC’s accuracy. For fast
analog signals at frequencies close to sampling clock fCLK, non-idealities of the ADC start
to show.

Depending on the sampling instant, the digital word’s equivalent analog amplitude
may be a few to several percentage points lower than the analog signal, as seen in Figure 6,
and consequently, the ADC gain is less than the ideal value. ADC gain [5] in Equation (12)
is expressed in LSB/V, where AE is the comparator’s gain, vDD and vSS are the supply rail
voltages, and ∆vID(MIN) is the minimum input difference needed for a deterministic 0 to 1
(or 1 to 0) comparator output transition:

AADC0 =
dADC

∆vID(LSB)
= dADC

(
AE

vDD − vSS

)
= dADC

(
AE

vI

)[
LSB

V

]
. (12)
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A comparator’s gain is often assumed to change with input for small signals; this
understanding is tied to an ideal comparator. A real comparator’s gain is defined by its
offset—a larger offset implies lower gain; as seen in Equation (12). Any input smaller than
the offset causing a comparator transition is a random metastability event and hence does
not contribute to actual signal gain. On the other hand, an input larger than the offset will
result in a proportionally larger number of 1s at the output vEO, translating to a larger gain.

Next, the sample and hold effect from a non-zero period tCLK introduces a delay
between the analog signal and the digital word. The ADC′s gain is a statistical function
of the sampling instant’s location, i.e., the relative phase between the fCLK and fO. For
instance, when the input signal frequency is at 10% of fCLK, there can be up to a 5% drop in
ADC gain (Figure 6, black trace, upper plot), and the delay can be up to 18◦ depending on
the first sample location. This could worsen to a 100% gain reduction (Figure 6, black trace,
lower plot) when the input frequency is at fCLK/2 and a delay of up to 90◦.

The worst-case must be accounted for in design, with delay ∠AADC being:

∠AADC = ±
(

360◦

2

)(
fO

fCLK

)
= ± πfO

fCLK
= ±(180◦)

(
fO

fCLK

)
, (13)

and corresponding worst-case drop in ADC gain |AADC| is:

|AADC| = kSAADC0 = Sin(90◦ + ∠AADC) AADC0, (14)

and their combined effect is modeled as a sampling pole pS. Here, kS is the gain drop factor.
Although this worst-case delay cannot be precisely modeled as an analog pole, sampling
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pole pS is assumed for consistency to be the frequency at which the 18◦ delay at fCLK/10
extrapolates to 45◦ in the analog pole inverse tangent function:

∠A10% ≡ −Tan−1
(

10%fCLK

pS

)
= Min∠AADC(10%) = −18◦. (15)

Here, ∠A10% is the worst-case delay at 10% fCLK, and ∠AADC(10%) is the ADC phase
delay at 10% fCLK. Consequently, sampling pole pS comes out to be 31% of fCLK:

pS = 31%fCLK. (16)

Prior art does not consider the effect of this pole, which is the main cause for stability
issues and needing to overcompensate systems. This concept is applied to DLDOs for the
first time and is discussed further in the sub-clock oscillation sub-section. However, note
that the gain and phase response curves drop at a much higher rate than with an analog
pole, and this approximation is optimistic.

3.2. Timed ADC for Higher Resolution

A single comparator serves as a 1-bit ADC. While this can simplify design, it comes at
the cost of increased quantization error. To enhance resolution with minimal additional
power, an alternative approach leverages time and accumulation: If an ADC slower than
the flash is acceptable, a comparator with a counter can be considered. Comparator output
vEO can be summed up (integrated) by feeding it to a counter with an arbitrarily large
full-scale count dFS, as shown in Figure 2. dADC

′s full-scale value dFS is much higher than a
comparator’s full scale of 1, and thus ADC resolution improves, albeit at the cost of speed.

Additionally, pragmatic area and delay limits set how large full-scale dFS can be. With
a limited value, the counter may finish counting all the way up to dFS within the positive
half cycle of slow analog signals as in Figure 7 (top plot). As input frequency goes up, it is
only able to count to a fraction of dFS (bottom plot) in the positive cycle, resulting in lower
output amplitude and lower ADC gain. Additionally, the counter introduces a longer delay
at higher input frequencies since the clock period tCLK is a bigger fraction of input period.
The gain reduction and delay are modeled as a counter-pole pC [16]. Like the sampling
pole pS, the phase delay is only approximately like an analog pole, and the gain drops only
at frequencies beyond 1.6 times the counter-pole pC, at which point the delay added is
about 55◦.
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An analog pole response (dotted gray plot) is fit to match the response with pC (red
plot) in Figure 8. The counter has a linear response ∆vE(L), taking tR time to respond to the
peak error voltage ∆vE(MAX):

∆vE(L) = ∆vE(MAX)

(
t

tR

)
. (17)

Electronics 2025, 14, x FOR PEER REVIEW 9 of 21 
 

 

0

1010

10100

d A
D

C
 [L

SB
]

0

1010

10100
−10

0

10

−10

0

10

0 10 20 30 40 50 60 70 80 90 100
Time [µs]

ΔdADC = dFS

∠pC

50% tO ≥ tFS

ΔdADC < dFS 50% tO < tFS∠pC

fO = 2%fCLK

v E
 [m

V
]

vE

vEfO = 5%fCLK

|p
C|

|p C
|

1111

101

1111

101

 

Figure 7. Simulation of counter-pole reducing gain and phase. 

An analog pole response (dotted gray plot) is fit to match the response with pC (red 
plot) in Figure 8. The counter has a linear response ΔvE(L), taking tR time to respond to the 
peak error voltage ΔvE(MAX): 

ΔvE(L) = ΔvE(MAX)ቀ ୲୲౎ቁ. (17) 

The equivalent fit RC analog pole response ΔvE(RC) is a decaying-exponential rise and 
is modeled with a time constant τRC: 

ΔvE(RC) = ΔvE(MAX)(1‒eି୲/த౎ి), (18) 

resulting in a pole modeling error EC: 

EC = ΔvE(RC) ‒ ΔvE(L). (19) 

For best fit, error EC is minimized when τRC is about 52% of tR: 

Min EC = ECቤ   τୖେ = 52%tୖ . (20) 

Thus, the counter-pole pC depends on fCLK and the change in count dADC (which is the 
full-scale value dFS at low frequency): 

pC = ଵଶ஠த౎ి ≈ ଵଶ஠(ହଶ%୲౎) ≈ ୤ిైే஠ୢఽీి . (21) 

Prior art approximates the location of this pole at 0 Hz with the z-domain approach 
[16]. The more accurate model presented here helps better understand the sensitivities of 
this pole to manage its effects on stability, as will be seen in the next section. 

d A
D

C
 [L

SB
]

0 10 20 30 40 50 0
4
8
12
16
20

0
100

1000
1100

10000
10100

|EC1| = |EC2|

Time [µs]

v R
 [m

V
]

vR

5 15 25 35 45

EC1

EC2
dADC

vRC

tR

 

Figure 8. Simulated equivalent RC response of counter-pole. Figure 8. Simulated equivalent RC response of counter-pole.

The equivalent fit RC analog pole response ∆vE(RC) is a decaying-exponential rise and
is modeled with a time constant τRC:

∆vE(RC) = ∆vE(MAX)

(
1 − e−t/τRC

)
, (18)

resulting in a pole modeling error EC:

EC = ∆vE(RC) − ∆vE(L). (19)

For best fit, error EC is minimized when τRC is about 52% of tR:

Min EC = EC

∣∣∣∣∣∣τRC = 52%tR

. (20)

Thus, the counter-pole pC depends on fCLK and the change in count dADC (which is
the full-scale value dFS at low frequency):

pC =
1

2πτRC
≈ 1

2π(52%tR)
≈ fCLK

πdADC
. (21)

Prior art approximates the location of this pole at 0 Hz with the z-domain approach [16].
The more accurate model presented here helps better understand the sensitivities of this
pole to manage its effects on stability, as will be seen in the next section.

In summary, the ADC has two poles, counter-pole pC, and sampling pole pS. Its
frequency response is depicted in Figure 9. The dotted green and blue lines are best-case
and worst-case phase values, respectively, and the data points in between illustrate the
effect of unpredictable phase between fCLK and input frequency across different cycles of
vO. The shaded red region represents the possible gain variation. Some designs employ
clocks that adapt to error voltage vE but require high-resolution ADCs and complicate
stability analysis due to randomness in pS [21,22].
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4. DAC Response
4.1. Low-Frequency Gain

The DAC translates a counter output change to a corresponding power device current
iPO change in A/LSB, where iPO(FS) is full scale iPO change:

ADAC0 ≈
iPO(FS)

dFS
= iLSB

[
A

LSB

]
. (22)

The count dADC is a binary word that is converted to thermometer gate driver code
dG in Figure 2. The number of 1s in dG corresponds to the number of power devices MPO
turned on in triode when the driver pulls MPOs gate voltage vG down to 0 V. Conversely,
the 0s indicate the number of turned off MPOs, with the driver setting vG to input voltage
vI, causing MPO to be cutoff. Some designs additionally control MPO body voltage [23] and
rely on parallel feedback loops, which complicate design by requiring one loop to be much
faster than the other over the entire fCLK range in DVFS and are hence not considered here.
Other designs [24] set vG to values other than 0 and vI, but doing so requires a complex
analog loop and drivers, increasing power, delay, and area.

4.2. Frequency Response

The driver propagation delay tP is modeled as a pole pD:

pD ≈ 1
tP

≫ 1
tCLK

= fCLK, (23)

and must be contained well within a clock period for practical purposes. Typically, pD
is set at 10–100 times fCLK. When choosing between pMOS and nMOS pass devices, the
former is preferred since it does not require a charge-pump-based driver at low SoC-level
voltages (which would introduce complexity, noise, and higher power) to generate high vG.
A unit pMOS pass device in triode exhibits inherent negative feedback through vSD and
gate-drain parasitic capacitance CGD(LSB) [25]. However, this same capacitance also creates
a feed-forward path from vG to vO, resulting in a cross-switch zero zX:

zX =
iLSB

2πCGD(LSB)
=

vI − vO

2πRLSBCGD(LSB)
≫ fCLK. (24)

Note that iLSB in the above equation has units in A/LSB, which is a transconductance.
This out-of-phase (right-half-plane) zero zX increases loop gain ALG at frequencies above
the zero and adds delay at the same time, degrading both phase (PM) and gain margin (GM)
of the system, and it must be avoided for stability and noise (spikes in vO at every clock
edge). It is set to be much higher than fCLK. Alternatively, a more involved approach to
designing gate drivers [26] may be adapted to a pMOS pass device to convert this zero to an
in-phase one. Since the zero depends on LSB power device current iLSB, it is also sensitive
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to input vI. This is shown in Figure 10 in the DAC’s frequency response. These effects are
highlighted here to help designers keep these parasitic effects beyond loop bandwidth.
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5. Closed-Loop Operation 
5.1. Oscillator 
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5. Closed-Loop Operation
5.1. Oscillator

In Section 2, DLDO regulation is explained using negative feedback. However, DLDOs
also exhibit positive feedback, leading to oscillations and instability. Positive feedback
arises at specific frequencies from loop delays and unity gain feedback, i.e., when total
delay across the loop reaches 360◦ and cycle-to-cycle gain is 1. To mitigate this issue,
low-frequency loop gain ALG0 is set to a high value for low ripple error from this oscillation
and hence higher accuracy:

ALG0 = AADC0 × ADAC0 × ZFB0 =
AE × iPO(FS) × ZFB0

vI
≈ AE × vO × βFB

vI
≈ AE × vR

vI
. (25)

The comparator exhibits a very high, but time-dependent gain AE(MAX) during its
output vEO transitions:

0 ≤ AE ≤ AE(MAX) ≫ 1, (26)

as also seen in Figure 11. However, between decisions or clock cycles, its gain is 0. As
in Figure 12, when feedback voltage vFB is close to the reference vR in steady state and
assuming comparator output vEO was deterministically 1, the count dADC increments by 1
LSB, causing vO to overshoot its target. As a result, in the next clock cycle the comparator
outputs 0 and counter decrements by 1, pulling vO below the target. This repetitive behavior
in vEO in closed-loop arising from finite ADC resolution is known as limit-cycling. This is
the first work to show positive feedback as the cause of limit cycling, as explained in the
following paragraph.
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5.2. Sub-Clock Oscillation 

The next significant delay in the loop is output pole pO. It exhibits considerable vari-
ation with load current iLD and input voltage vI. Due to its additional delay, the assump-
tion in Equation (29) is not satisfied at certain operating points and pO values, leading to 
the positive feedback oscillation condition in Equation (28) being met at a frequency fOSC′ 
that is less than fCLK/2 and increasing phase delay ∠ALG′: ∠ALG′อ   f୓ୗେ′ = ଵ ଶ୲ీᇱ < ୤ిైేଶ  = 0°. (31) 

This reduction in fOSC to fOSC′ causes sub-clock oscillations, increasing the oscillation 
amplitude from Figure 12 to that seen in Figure 13 [13]. This is undesirable for a low-ripple 
supply (single prime in superscript refers to the same variables with sub-clock oscillations 
included). The counter cycles through multiple digital words dADC′ even at steady state. A 
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The counter and sampling poles together introduce a 180◦ phase delay as seen in
Figure 9 at the operating frequency of fCLK/2, which adds with the 180◦ phase shift from
negative feedback (due to an odd number of inversions from the comparator, driver, and
MPO) to produce a total of 360◦ loop phase delay ∠ALG at fCLK/2:

∠ALG

∣∣∣∣∣∣∣ fCLK

2

= 180◦ +∠AADC = 180◦ −
(

tD

2tCLK

)
(360◦) = 0◦. (27)

Here, tD is the ADC delay and fOSC the oscillation frequency, fCLK/2. The comparator’s
limiting action resembles automatic gain control (AGC) and forces the loop gain to 1 at
fCLK/2:

ALG

∣∣∣∣∣∣∣ fCLK

2
= fOSC

= 1∠0◦ = |ALG(OSC)|∠ALG(OSC), (28)

as also seen in Figure 12. Here, ‘OSC’ in the gain subscript refers to gain at fOSC. This
applies only when all other delay sources in the loop are negligible and sum to a fraction
of tCLK:

tD = tCLK =
tOSC

2
≫ 1

pO
+

1
zC

+
1

pLD
+

1
pD

+
1

zX
. (29)

Output voltage vO
′s ripple ∆vO is then calculated as:

∆vO = ∆dADCADACRO = (1)iLSBRO ≈ (vI − vO)

(
RPO||RLD

RLSB

)
. (30)

5.2. Sub-Clock Oscillation

The next significant delay in the loop is output pole pO. It exhibits considerable
variation with load current iLD and input voltage vI. Due to its additional delay, the
assumption in Equation (29) is not satisfied at certain operating points and pO values,
leading to the positive feedback oscillation condition in Equation (28) being met at a
frequency fOSC

′ that is less than fCLK/2 and increasing phase delay ∠ALG
′:

∠ALG′

∣∣∣∣∣∣∣∣fOSC′ =
1

2tD′
<

fCLK

2

= 0◦. (31)

This reduction in fOSC to fOSC
′ causes sub-clock oscillations, increasing the oscillation

amplitude from Figure 12 to that seen in Figure 13 [13]. This is undesirable for a low-ripple
supply (single prime in superscript refers to the same variables with sub-clock oscillations
included). The counter cycles through multiple digital words dADC

′ even at steady state.
A detailed mathematical modeling technique for these sub-clock oscillations is provided
in [27]. However, this sub-section reviews the cause of sub-clock oscillations in the transient
domain for a better understanding of how a fix was developed for it.
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Importantly, the count dADC′ and output voltage vO are 90° out of phase at fOSC′ due to 
the combined delay from fCLK and output pole pO. This adds to the 90° delay from the 
counter-pole pC and 180° from negative feedback to produce a 360° loop delay. In this 
case, the counter acts as the AGC by counting the number of tCLKs that fit within the loop 
delay tPO (named so for the delay with lower pO). The counter sets the loop gain to 1 at the 
frequency fOSC′ that corresponds to the integer value greater than the ratio of tPO and tCLK 
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When the counter counts up and reaches its ideal value for that operating condition
dADC(i) and if there is a low tP delay across MPO, the power device current iPO also instantly
reaches the optimal load current iLD. However, the output pole’s delay tPO exceeds a single
clock cycle, and the rise in vO is unable to reach its optimal value vO(i) before the next clock
cycle. Thus, the comparator still perceives vO

′s translation, the feedback voltage vFB, to be
lower than the reference vR and continues to drive the counter to increase count beyond
dADC(i). Depending on pO

′s delay, the comparator finally notices vFB reaching the reference
a few clock cycles later, by which time the count is higher than dADC(i) by a few LSBs.

At this point, the comparator finally outputs a 0, reducing the count by 1 LSB, but
it remains above dADC(i). Consequently, power device current iPO decreases but remains
greater than iLD, causing output voltage vO to charge up higher despite comparator output
vEO being 0. vO overshoots further, causing comparator output vEO to continue staying
at 0. Eventually, the power device current iPO drops enough to equal the load current iLD
when dADC

′ reaches dADC(i), but vO is still above vO(i) due to the previous overcharging,
so vEO remains at 0 despite reaching optimal count. At this point, the count drops below
dADC(i), and iPO drops below iLD, and by the time vO drops to vO(i), dADC

′ is a few LSBs
below dADC(i). This process repeats, sustaining the oscillation, as summarized in Figure 14.
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Importantly, the count dADC
′ and output voltage vO are 90◦ out of phase at fOSC

′ due
to the combined delay from fCLK and output pole pO. This adds to the 90◦ delay from the
counter-pole pC and 180◦ from negative feedback to produce a 360◦ loop delay. In this
case, the counter acts as the AGC by counting the number of tCLKs that fit within the loop
delay tPO (named so for the delay with lower pO). The counter sets the loop gain to 1 at
the frequency fOSC

′ that corresponds to the integer value greater than the ratio of tPO and
tCLK (represented here using the ceiling function), and the sub-clock oscillation period
tD

′ becomes:

tD′ =
⌈

tPO

tCLK

⌉
tCLK =

tOSC
′

2
> tCLK. (32)

The counter ripple ∆dADC
′ is:

∆dADC′ =
0.5fCLK

fOSC
′ = tD′fCLK =

⌈
tPO

tCLK

⌉
, (33)

and translates to output voltage ripple ∆vO
′:

∆vO′ = ∆dADC′ADACRO ≈ ∆dADC′iLSBRPO = (vI − vO)

(
∆dADC

′

dADC
′

)
. (34)
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Alternately, this is inferred [13] as a higher ripple at a higher fCLK to pO ratio.
Further, the spectral content of vO

′ and count dADC
′ is shown in Figure 15. Due to

digital sampled control, harmonics of fOSC
′ are expected. In the frequency domain, dADC

′

(red plot) has a tone at fOSC
′ and its harmonics. Additionally, there are components of fCLK

and its harmonics/sub-harmonics that are lower in vO (black plot) due to pO. The effects of
sampling and aliasing create these undesired spurs. At high fCLK, the noise spectrum is
akin to a ∆Σ modulator in an oversampling ADC due to integration [28].
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5.3. One-LSB Regulator 

This sub-section highlights the operation of the proposed novel block. Typically, sta-
bility at higher frequencies is achieved with derivative control. The basic approach is to 
detect a high slope in vO at steady-state and correct for it with a fast feedback loop [16]. 
For this application, though, the lack of high-speed, high-resolution ADCs limits slope 
detection accuracy. In the simple system of Figure 2, this may be carried out by applying 
a correction on the counter when a vO excursion is detected, with a delay line-based slope 
detector sensing comparator output vEO, but it lowers the counter-pole and reduces ADC 
gain and accuracy. A more elegant and robust solution is offered here. 

The DLDO transforms into a one-LSB regulator with the addition of a digital block, 
the error-subtracting counter, that enforces oscillations at a one-LSB amplitude: 

ΔdADC″ ≡ 1, (35) 

and sets the oscillation frequency fOSC″ back at fCLK/2. With this, the system cancels the 
effects of all delays other than clock delay (double prime in superscript refers to variables 
in the one-LSB regulator). 

The comparator output vEO is a string of 1s for the positive half cycle input and 0s for 
the negative half and captures information on the oscillation period tOSC″. By counting the 
number of 1s and 0s and multiplying by tCLK, the tOSC″ is readily obtained, which may then 
simply be deducted from the count with an error subtractor. Design-wise, the counter 
block in the original DLDO in Figure 2 is replaced by the error-subtracting counter system 
in Figure 16 below to make the DLDO a one-LSB regulator. The solution is adding an extra 
counter CNTR2 (black section) alongside the original counter CNTR1 (gray section). 
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5.3. One-LSB Regulator

This sub-section highlights the operation of the proposed novel block. Typically,
stability at higher frequencies is achieved with derivative control. The basic approach is to
detect a high slope in vO at steady-state and correct for it with a fast feedback loop [16].
For this application, though, the lack of high-speed, high-resolution ADCs limits slope
detection accuracy. In the simple system of Figure 2, this may be carried out by applying a
correction on the counter when a vO excursion is detected, with a delay line-based slope
detector sensing comparator output vEO, but it lowers the counter-pole and reduces ADC
gain and accuracy. A more elegant and robust solution is offered here.

The DLDO transforms into a one-LSB regulator with the addition of a digital block,
the error-subtracting counter, that enforces oscillations at a one-LSB amplitude:

∆dADC
′′ ≡ 1, (35)

and sets the oscillation frequency fOSC
′′ back at fCLK/2. With this, the system cancels the

effects of all delays other than clock delay (double prime in superscript refers to variables
in the one-LSB regulator).

The comparator output vEO is a string of 1s for the positive half cycle input and 0s for
the negative half and captures information on the oscillation period tOSC

′′. By counting the
number of 1s and 0s and multiplying by tCLK, the tOSC

′′ is readily obtained, which may
then simply be deducted from the count with an error subtractor. Design-wise, the counter
block in the original DLDO in Figure 2 is replaced by the error-subtracting counter system
in Figure 16 below to make the DLDO a one-LSB regulator. The solution is adding an extra
counter CNTR2 (black section) alongside the original counter CNTR1 (gray section).
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Figure 17. Simulation of constant delay being canceled. 

In the pO-induced vO″ ringing in Figure 17, CNTR1 counts up by 4, of which the first 
2 LSBs bring it up to optimal count dADC(i), while the subsequent 2 LSBs result from the 90° 
delay between power device current iPO and vO caused by output pole delay. These 2 extra 
LSBs represent the amplitude (half of 4) of the sub-clock oscillation and must be sub-
tracted from the counter at the end of the string of 1s in vEO to bring dADC″ back to dADC(i). 
Unlike CNTR1, CNTR2 is made to count once every 2 clock cycles (at fCLK/2) so its count d2 
goes up by half as much as CNTR1. Assume this parallel count d2 is 0 at the beginning of 
this string of 1s. While main count dADC″ goes up by 4 LSBs, parallel count d2 goes up to 2 
LSB, and this is subtracted from CNTR1 at the point when the count dADC″ changes direc-
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CNTR2 uses this information from vEO to measure the length of the string of 1s (or
0s) and subtracts half of it from CNTR1 upon reaching steady-state to cancel oscillation.
This also eliminates ringing from overshoot or undershoot caused by load disturbance as
an added benefit. An exclusive-OR (XOR) gate (blue section) takes vEO values from the
current and previous clock cycles (the tCLK blocks in Figure 16 represent one clock-cycle
delay). It outputs 0 if both its inputs are equal, implying an excursion from a steady state.
Otherwise, it outputs 1 when current and previous states are unequal, indicative of having
reached steady state vO limit-cycling [29]. This signal dDIR triggers oscillation cancellation
and subsequently resets CNTR2 and serves as a marker of the end of half of tOSC

′′, just
like a peak detector. An example is shown in Figure 17, where vEO is 1 when the count
increases and 0 when it reduces, and dDIR is usually 0 but becomes 1 at the points marked
in green when the count changes direction and triggers a subtraction.
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In the pO-induced vO
′′ ringing in Figure 17, CNTR1 counts up by 4, of which the first

2 LSBs bring it up to optimal count dADC(i), while the subsequent 2 LSBs result from the 90◦

delay between power device current iPO and vO caused by output pole delay. These 2 extra
LSBs represent the amplitude (half of 4) of the sub-clock oscillation and must be subtracted
from the counter at the end of the string of 1s in vEO to bring dADC

′′ back to dADC(i). Unlike
CNTR1, CNTR2 is made to count once every 2 clock cycles (at fCLK/2) so its count d2 goes
up by half as much as CNTR1. Assume this parallel count d2 is 0 at the beginning of this
string of 1s. While main count dADC

′′ goes up by 4 LSBs, parallel count d2 goes up to 2 LSB,
and this is subtracted from CNTR1 at the point when the count dADC

′′ changes direction.
As a result, dADC” is set to its optimal value dADC(i) at the exact same point when vO is at
its optimal value. This wards off pO delays from sustaining any oscillations.

The XOR gate marks the end of 1s and triggers this subtraction. Also, parallel count d2
is reset to 0 using the signal dDIR at the next clock cycle to prepare for the next oscillation
occurrence. It is essential to disable the counting on both CNTR1 and CNTR2 during the
clock cycle when the subtraction occurs to prevent metastability errors. Next, in cases
where delays occur infrequently, such as during load dumps, line steps, or noise spikes,
these corrective actions must be taken only a few times. However, due to the constant delay
introduced by the output pole pO in the loop, this corrective action needs to be constantly
taken every oscillation half cycle at those operating points. With the proposed solution, the
designer can eliminate inevitable oscillations at low pO that plagued prior art and restrict
operating range to higher pO or low fCLK (slower response).

In summary, the error-subtracting counter plays a crucial role in mitigating transient
or stability errors within the DLDO. Though based on a simple concept that is almost
like auto-zeroing, it has a profound impact—its use can be extended to asynchronous
DLDOs in [30–33]; that have lower stability; or further to other digitally controlled feedback
systems to suppress ringing. The best way to compare LDOs in terms of response time is
with the plot of the output voltage while reacting to a large load current transient (blue
plot). Figure 18 illustrates this load dump response for both typical DLDO designs with
two different phase margins (green and dotted red plots) and additionally shows the
effect of the addition of the error-subtracting counter (black plot). The system with higher
output capacitance CO (green plot) experiences smaller undershoots since it can deliver
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more charge in the same time window before the loop can respond. However, it exhibits
sustained ringing due to lower pO and PM compared to the system using a smaller CO
(dotted red plot), which has a more pronounced undershoot. This trade-off is released in
the one-LSB regulator (black plot), and there is no ringing upon recovery from undershoot.
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Thus, CO can be increased arbitrarily (only limited by application area limits) without
affecting stability. However, upon closer inspection, the black plot in Figure 18 shows
slight ringing at startup and recovery from high to low iLD. This is because under the two
special cases of startup or counter “railing out” (reaching full-scale dFS), parallel count
d2

′s value does not correspond to tOSC
′′/4 (half of undershoot—quarter the cycle) since

it has not stopped counting parallelly with CNTR1. To address this, the error-subtracting
counter is disabled under these two conditions by deactivating and resetting CNTR2. The
red section in Figure 16 illustrates this control path addition, where CNTR2 is enabled only
when dADC

′′ is not recovering from 0 (startup) or dFS (railing out). This functionality is
realized with a flip-flop that clears when the count is either 0 or dFS and sets when the XOR
output dDIR is high the next time (upon reaching steady-state). This effectively gets rid
of all ringing in the system. However, Figure 18 shows that startups are faster without
this extra feature. Designers may choose to accept some ripple at startup for faster turn-on
while retaining the disable feature for full-scale. In summary, steady-state one-LSB limit
cycling provides a means to cancel sub-clock oscillations to improve stability and response
time, which was limited in prior art due to the large power device array size.

To further improve speed and PSR, the concept of the one-LSB regulator is readily
extended to a binary count scheme using the same idea of removing half the oscillation
delay, as seen in the yellow plot in Figure 18. Since CNTR1

′s change in count now doubles
every clock cycle, the other counter, also doubling, must return to the count corresponding
to half the recovery time (instead of half the count) to correspond to the lowest point on the
undershoot (or highest in the overshoot), i.e., at tOSC

′′/4, when vO has a slope of 0, which
points to the instant when power device current iPO matches load current iLD demand. For
example, if parallel count d2 is 32 when XOR output dDIR goes high, then the count to be
subtracted should correspond to half of the time (and not half the value), which occurred
when d2 was 4 (instead of 16). The value subtracted should thus be 32 − 4 = 28. For this,
two parallel counters are employed, one operating at fCLK for subtracting 32 and the other
at fCLK/2 to add 4. Note that only the counters are made exponential and not the power
device weighting to maintain DAC linearity for steady-state accuracy.

The exponential counting generates a slightly higher ripple within the first clock
cycle before it is cancelled by the error-subtracting counter, and that is more pronounced
at low iPO and low pO values since loop gain ALG0 is high. Designers may choose to
trade this additional ripple with speed while still being faster than a linear count system
by considering other counting schemes such as exponential with power less than 2 [34]
(or greater than 2 for even higher speeds, only limited by high clock power dissipation),
recursive Fibonacci series, or interval search [29]. Note that with a binary counting scheme,
LSB size can be further reduced to achieve higher accuracy at light load without significantly
affecting response time, since delay is now a logarithmic function of array size. Future
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work will focus on shifting between counting methods based on the loop delay measured
by the parallel counter via d2.

6. Output Regulation

Negative feedback plays a crucial role in regulating the output voltage of a DLDO for
its load. It helps set output voltage VO:

VO = VRACL0 = VR

(
AADCADACRO

1 + ALG0

)
≈ VR

βFB
. (36)

Uppercase is used for low-frequency values of variables defined earlier. A high
comparator gain in Equation (25) maintains the low-frequency closed loop gain ACL0
close to 1/βFB. A higher loop gain ALG0 results in a smaller error between ACL0 and
1/βFB, leading to lower steady-state error and higher accuracy. At steady state, an LDO
is characterized by line regulation (effect of input vI changing on vO accuracy) and load
regulation (effect of output resistance change on vO accuracy). Negative feedback is
effective in DLDOs only at lower frequencies. At higher frequencies, positive feedback
dominates and disrupts operation under specific conditions. Therefore, it is proposed to
use the error-subtracting counter for good regulation.

6.1. Power-Supply Rejection

PSR and line regulation are critical functions of an LDO. The ability to maintain a fixed
vO despite vI variations determines the quality of a power supply. A higher PSR translates
to a lower gain from input to output. In a DLDO, the power device MPO operates as a
switch. Hence, the fraction of vI

′s AC ripple showing up in vO depends on the resistor
divider formed by power device resistance RPO and loaded feedback resistance RLD ||
RFB. Since MPO is in triode, RPO is quite small, allowing a significant portion of vI ripple to
pass through to vO, yielding high supply gain or low PSR.

Most designers ignore PSR, with the assumption that CMOS loads can tolerate any
ripple. However, ripple eats into noise margins, requiring stronger logic drive and more
power. Additionally, the dynamic nature of CMOS loads causes sudden undershoots in
output vO as blocks turn on from sleep mode that combine with input ripple to adversely
affect performance by causing unintended resets, metastability-related timing errors, and
memory corruption. This is typically managed by either setting a guard band period in the
load after turn-on, by limiting larger undershoots as in Figure 18 with low output current
range, or by using large output capacitors. However, this either slows down the system or
the number of regulators increase and area increases. A DLDO offering some PSR at even
low SoC-level voltages can accomplish the same task with no area or power overhead.

In a DLDO, however, sub-clock oscillations extend loop delay and further increase
supply gain by increasing loop output resistance [5] with positive feedback. The one-LSB
regulator extends negative feedback to higher operating frequencies and cancels any ripple
or disturbance in the system at a frequency lower than fCLK/2. Thus, even ripples injected
from input to output are removed after a half-cycle, like in Figure 17. This improves PSR;
however, it remains much lower than what analog LDOs achieve, where MPO acts as a
current source in saturation and presents a higher impedance to input [2].

Note that PSR improvement in the one-LSB regulator applies only in the small-signal
context. With large signals, for instance, a sinusoidal input voltage with a high frequency
or amplitude will still propagate to vO if it exceeds the slew rate at which the counter
can make MPO turn on or off. Beyond this limit, large-signal variations in vI cannot be
rejected, resulting in a residue ripple in the count dADC

′′′ given by ∆dADC
′′′ (triple prime

in superscript refers to variables with power supply ripple considered):

∆d′′′
ADC =

⌈
∂vI/∂t

∆vO/tCLK

⌉
MAX

=

⌈
∂(0.5∆vIsin2πfIt)/∂t

∆vO/tCLK

⌉
MAX

=

⌈
π∆vIfI

∆vOfCLK

⌉
, (37)
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and shown in Figure 19, it translates to a vO
′′′ variation ∆vO

′′′:

∆v′′′
O = ∆d′′′

ADCADAC0RO = ∆d′′′
ADC∆vO =

⌈
π∆vIfI

fCLK

⌉
(38)
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To ensure one-LSB regulation, the maximum slope in vI, ∂vI/∂t, must not exceed the
maximum slew rate of the LDO, ∆vOfCLK. In other words, if the input voltage is expected
to have slewing larger than this, fCLK may need to be increased or a DLDO may not fit the
PSR needs of that application. Here, ∆vI is vI

′s ripple amplitude, and fI is the input voltage
ripple frequency.

6.2. Design

To achieve good regulation at the operating frequency of interest, negative feedback
must dominate over positive feedback. Traditional analog techniques that enhance loop
stability can also be extended to DLDOs. For instance, adding a bypass capacitor across RFB1
introduces an in-phase zero to the loop, preserving gain and phase that might otherwise
be lost to other poles. Bypassing the DAC with a feed-forward capacitor or creating an
in-phase zero within the ADC in the digital domain will have a similar effect.

Finally, DLDOs offer an advantage in terms of efficiency control. When CMOS loads
enter sleep mode, they typically lower fCLK and reduce their current iLD. At lower iLD,
DLDO loop gain increases, and pO drops in frequency, reducing PM, making it preferable to
operate at a lower bandwidth with a lower clock for lower sub-clock oscillation amplitude.
Coincidentally, the load’s clock is also decreased and can directly (or a fractional frequency
derivative) be used with the DLDO when operating in DVFS mode. This eliminates the
need for a separate clock source for the DLDO and significantly reduces the latter term of
the power loss PLOSS, thus improving efficiency at low iLD:

PLOSS ≈ iQvI + fCLKCG(EQ)vI
2. (39)

Here, iQ is the quiescent current used by the DLDO feedback control, and CG(EQ) is
the equivalent capacitance that it presents to the input. Further loss reduction is obtained
by clock-gating inactive sections of CNTR and decoder [13,30] to reduce the clock activity
factor and CG(EQ), which is typically the bottleneck in these designs.

7. Conclusions

This paper proposes digital LDOs for highly integrated applications that operate over
wide current and voltage ranges to drive CMOS SoC blocks. A simple model is presented
to analyze any DLDO. The shortcomings in stability analyses in prior art are bridged
with new and more accurate models of feedback effects such as counter-pole, sampling
pole, and loop gain response. Intuitive guidelines are provided to keep parasitic effects
from affecting the system. Further, the oscillatory behavior of DLDOs is explained. A
novel block, the error-subtracting counter, is proposed to enforce one-LSB regulation that
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can make the system all-stable while exponentially improving response time, reducing
output noise, and improving PSR of DLDOs by canceling all undesired oscillations in the
output voltage. With a simple addition to the control scheme, any prior-art DLDO can be
made exponentially faster while maintaining low design complexity with low power and
low area to fit the solution on-chip. Additionally, based on the need, the designer may
choose a smaller LSB power device to improve DC regulation accuracy by trading with
speed. Finally, well-known techniques are reviewed that help with system-level design
for improving stability. Higher speed requires higher operating power. A few counting
schemes are outlined for the counter-based integrator, aiding the designer to pick the one
that suits the application the best. Additionally, DVFS may be employed to trade speed
with efficiency. Future work will explore how the system may adaptively switch between
counting schemes for even faster response or lower power and will also look at improving
PSR at higher frequencies and slew rates.
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