Contents

	Page
List of Figures	v
List of Abbreviations	vii
1. Negative Feedback	1
1.1. Model	1
1.2. Translations	2
1.3. Frequency Response	3
1.4. Stability	5
A. Gain Objective	5
B. Stability Criterion	5
C. Stabilization	6
D. Gain-Bandwidth Product	7
1.5. Loop Variations	8
A. Pre-Amplifier	8
B. Multiple Taps	8
C. Parallel Paths	9
D. Embedded Loops	9
2. Op-Amp Translations	10
2.1. Operational Amplifier	10
2.2. Operational Transconductance Amplifier	11
2.3. Feedback Translations	11
A. Non-Inverting Op Amp	11
B. Inverting Op Amp	13
C. Differential Op Amp	15
D. Tradeoffs	16
3. Stabilizers	17
3.1. Strategies	17
A. Type I: Dominant Pole	17
B. Type II: Pole–Zero Pair	18
C. Type III: Pole–Zero–Zero Triplet	18
3.2. Amplifier Translations	19
3.3. Feedback Translations	21
A. Non-Inverting	21
B. Inverting	23
3.4. Mixed Translations	27
A. Non-Inverting	27
B. Inverting	29
3.5. Tradeoffs	33

4. Voltage Control	33
4.1. Controller	34
A. Composition	34
B. Feedback Objectives	34
4.2. Loop Gain	35
4.3. Voltage Mode	37
A. Dominant Pole	37
B. Pole–Zero–Zero Triplet	39
C. Design Notes	40
4.4. Current Mode	41
A. Current Loop	41
B. Loop Gain	41
C. Stabilization	42
4.5. Discontinuous Conduction	44
A. Switched Inductor	44
B. Stabilization	45
5. Current Control	46
5.1. Controller	46
5.2. Transconductance Gain	47
5.3. Inherent Stability	48
5.4. Pole–Zero Stabilization	50
5.5. Discontinuous Conduction	51
6. Digital Control	53
6.1. Voltage Controller	53
6.2. Current Controller	54
6.3. Digital Response	54
A. Digital Gain	54
B. Digital Bandwidth	54
C. Limit Cycling	55
6.4. Tradeoffs	55
7. Summary	55

List of Figures

	Page
Figure 1. Feedback actions.	1
Figure 2. Inverting feedback loop.	2
Figure 3. Closed-loop response with constant β_{FB} .	4
Figure 4. Closed-loop response with variable β_{FB} .	4
Figure 5. Unstable loop-gain response.	5
Figure 6. Closed-loop response.	6
Figure 7. Stable loop-gain response.	6
Figure 8. Single-pole response.	8
Figure 9. Pre-amplified feedback loop.	8
Figure 10. Feedback loop with multiple inputs and outputs.	9
Figure 11. Feedback loop with parallel paths.	9
Figure 12. Feedback loop with embedded loops.	10
Figure 13. Operational amplifier.	10
Figure 14. Operational transconductance amplifier.	11
Figure 15. Non-inverting (voltage-mixed) op amp.	12
Figure 16. Inverting (current-mixed) op amp.	13
Figure 17. Inverting (current-mixed) op-amp model.	13
Figure 18. Differential op amp.	15
Figure 19. Dominant-pole stabilization.	17
Figure 20. Pole–zero stabilization.	18
Figure 21. Pole-zero-zero stabilization.	18
Figure 22. Dominant-pole and pole-zero OTAs.	19
Figure 23. Pole-zero-zero OTA.	20
Figure 24. Pole-zero non-inverting feedback translation.	22
Figure 25. Pole-zero-zero non-inverting feedback translation.	22
Figure 26. Dominant-pole inverting feedback translation.	24
Figure 27. Pole-zero inverting feedback translation.	24
Figure 28. Pole-zero-zero inverting feedback translation.	25
Figure 29. Pole-zero non-inverting mixed translation.	28
Figure 30. Pole-zero-zero non-inverting mixed translation.	28
Figure 31. Dominant-pole inverting mixed translation.	30
Figure 32. Pole-zero inverting mixed translation.	30
Figure 33. Pole-zero-zero inverting mixed translation.	32

Figure 34. Voltage-mode voltage controller.	34
Figure 35. Duty-cycled command.	35
Figure 36. Small-signal model of the switched inductor in CCM.	36
Figure 37. Dominant-pole stabilization in CCM.	37
Figure 38. Pole–zero–zero stabilization in CCM.	39
Figure 39. Current-mode voltage controller.	41
Figure 40. Equivalent current-mode voltage controller.	42
Figure 41. Small-signal model of the switched inductor in DCM.	44
Figure 42. Current controller.	46
Figure 43. Current translation of the switched inductor in CCM.	47
Figure 44. Inherent transconductance in CCM.	48
Figure 45. Pole-zero transconductance in CCM.	50
Figure 46. Dominant-pole transconductance in DCM.	52
Figure 47. Digital voltage-mode voltage controller.	53
Figure 48. Digital current controller.	54

1.4. Stability

A. Gain Objective

The principal aim of a feedback loop is to set an s₀ that is a reverse β_{FB} translation of s_I's mirrored reflection. For A_{CL} to follow this translation, $1/\beta_{FB}$ should be lower than A_{FW}. But since gain is another goal, $1/\beta_{FB}$ should be one or greater. So in practice, A_{FW} is usually higher than $1/\beta_{FB}$ across frequencies of interest and β_{FB} is lower than or equal to 1 or 0 dB.

B. Stability Criterion

High A_{LG} is desirable in feedback systems because amplifying s_E reduces the mismatch between s_I and s_{FB} . Translating s_O to s_{FB} , comparing s_{FB} to s_I , and amplifying the resulting s_E so this A_{LG} is high and s_O is accurate usually requires two or more stages. Since each stage incorporates one or more poles, finding two or more poles in A_{LG} is not uncommon.

In Fig. 5, to cite an example, A_{LG} 's zero- or low-frequency gain A_{LG0} is well above 0 dB. A_{LG} falls 20 dB per decade after p_1 and another 20 dB per decade after p_2 . A_{LG} crosses 0 dB at a *unity-gain frequency* f_{0dB} that is higher than p_1 and p_2 . Since each pole reduces phase shift up to 90°, $\angle A_{LG}$ reaches -180° (at the *inversion frequency* f_{180°) before A_{LG} crosses 0 dB.

Fig. 5. Unstable loop-gain response.

Since A_{LG} inverts with -180° past $f_{180^{\circ}}$, A_{LG} is -1 at f_{0dB} . With this much phase shift, positive feedback peaks A_{CL} at f_{0dB} towards infinity:

$$A_{CL} = A_{FW} \left\| \frac{1}{\beta_{FB}} = \frac{A_{FW}}{1 + A_{LG}} \right|_{A_{LG} = 1 \le 180^{\circ}} = \frac{A_{FW}}{1 - 1} \to \infty.$$
 (8)

Since A_V 's R_{IN} is very high, β_{FB} is the v_O fraction that R_2 sets across R_1 :

$$\beta_{\rm FB} \equiv \frac{\mathbf{v}_{\rm FB}}{\mathbf{v}_{\rm O}} \approx \frac{\mathbf{R}_1}{\mathbf{R}_1 + \mathbf{R}_2} \,. \tag{20}$$

So A_{LG} is $A_{FW}\beta_{FB}$ and A_{LG} reaches 0 dB at $A_{LG0}p_A$ or $A_{FW0}\beta_{FB}p_A$:

$$\mathbf{A}_{\mathrm{LG}} = \mathbf{A}_{\mathrm{FW}} \boldsymbol{\beta}_{\mathrm{FB}} \approx \left(\frac{\mathbf{A}_{\mathrm{V0}}}{1 + \mathrm{s}/2\pi p_{\mathrm{A}}} \right) \left(\frac{\mathbf{R}_{1}}{\mathbf{R}_{1} + \mathbf{R}_{2}} \right)$$
(21)

$$f_{0dB} \approx A_{LG0} p_A = A_{FW0} \beta_{FB} p_A \approx A_{V0} \left(\frac{R_1}{R_1 + R_2}\right) p_A.$$
(22)

And the voltage gain A_{VO} to v_O is A_{CL} 's $A_{V0} \parallel 1/\beta_{FB}$ up to f_{0dB} :

$$A_{VO} \equiv \frac{V_{O}}{V_{IN}} = A_{FW} \| \frac{1}{\beta_{FB}} \approx \left(A_{V0} \| \frac{R_{1} + R_{2}}{R_{1}} \right) \left(\frac{1}{1 + s/2\pi f_{0dB}} \right), \quad (23)$$

which reduces to $1/\beta_{FB}$'s $(R_1 + R_2)/R_1$ up to f_{0dB} when A_{FW} 's A_{V0} is much greater than this $1/\beta_{FB}$.

Fig. 15. Non-inverting (voltage-mixed) op amp.

Example 1: Determine A_{FW0} , β_{FB} , A_{LG0} , f_{0dB} , A_{VO0} , and $f_{CL(BW)}$ when A_{V0} is 100 V/V, p_A is 10 kHz, R_1 is 10 k Ω , and R_2 is 90 k Ω .

Solution:

$$\begin{split} A_{FW0} &\approx A_{V0} = 100 \text{ V/V} \\ \beta_{FB} &\approx \frac{R_1}{R_1 + R_2} = \frac{10k}{10k + 90k} = 100 \text{ mV/V} \\ A_{LG0} &= A_{FW0}\beta_{FB} \approx (100)(100m) = 10 \text{ V/V} \\ f_{0dB} &\approx A_{LG0}p_A \approx (10)(10k) = 100 \text{ kHz} \end{split}$$

phase from shifting 180°. This way, A_{LG} follows A_S up to p_1 and continues to fall after z_{S1} and z_{S2} in A_S counter the effects of p_1 and p_2 in A_{LG} .

Parasitic poles in A_s eventually limit A_s 's bandwidth. So after z_{s1} and z_{s2} , A_s flattens with p_{s2} and falls with p_{s3} . Although p_{s2} and p_{s3} are not always apart, only one of these poles can be close to f_{0dB} for stability.

3.2. Amplifier Translations

An op amp can add p_{S1} . This op amp, however, cannot be *any* op amp. This is because the low-frequency gain A_{S0} and p_{S1} that A_{V0} and p_A set should establish an f_{0dB} that keeps the feedback system stable:

$$A_{s} \approx \frac{A_{v_0}}{1 + s/2\pi p_{A}}.$$
(36)

The OTAs in Fig. 22 can also add p_{S1} . A_{S0} is the gain that A_G sets across R_F . In the first implementation, A_S falls past p_F when C_F shunts R_F :

$$A_{s} \approx A_{G} \left(R_{F} \| \frac{1}{sC_{F}} \right) = \frac{A_{G}R_{F}}{1 + sR_{F}C_{F}} = \frac{A_{G}R_{F}}{1 + s/2\pi p_{F}}.$$
 (37)

Fig. 22. Dominant-pole and pole-zero OTAs.

Current-limiting C_F with R_C adds z_{S1} . With R_C , A_S falls past p_C when C_F shunts R_C and R_F before parasitic capacitance C_X at v_O shunts R_F . p_C eventually fades past z_{CX} when C_F shorts with respect to R_C . Once shorted, A_S flattens to $A_G(R_F \parallel R_C)$ and later falls past p_O when C_X shunts $R_F \parallel R_C$:

$$A_{s} = A_{G} \lfloor R_{F} \| (Z_{F} + R_{C}) \| Z_{X} \rfloor$$
$$= \frac{A_{G} R_{F} (1 + sC_{F}R_{C})}{s^{2}R_{C}C_{F}R_{F}C_{X} + s[(R_{F} + R_{C})C_{F} + R_{F}C_{X}] + 1}$$

Fig. 31. Dominant-pole inverting mixed translation.

As follows A_F 's A_{V0} until A_β drops below A_{V0} at p_{X1} . With two poles in A_F and one in A_β , A_F falls faster than A_β . As a result, A_S falls with A_β past p_{X1} until A_F falls below A_β at p_{X2} . This way, A_{S0} is $-A_{V0}$, p_{S1} is p_{X1} , and p_{S2} is p_{X2} , but only when A_β 's projection to p_{X1} precedes p_A and p_F and A_F 's projection to p_{X2} exceeds p_{X1} :

$$\left| \mathbf{A}_{\beta} \right| \approx \frac{1}{\mathbf{sR}_{F} \mathbf{C}_{F}} \right|_{\mathbf{f}_{O} \geq \frac{1}{2\pi \mathbf{A}_{V0} \mathbf{R}_{F} \mathbf{C}_{F}} = \frac{\mathbf{p}_{F}}{\mathbf{A}_{V0}} \approx \mathbf{p}_{X1}} \leq \left| \mathbf{A}_{F} \right|_{\mathbf{f}_{O} < \mathbf{p}_{A}} \approx \mathbf{A}_{V0},$$
(65)

$$\left|A_{F}\right|_{f_{O} > p_{A}, p_{F}} \approx \frac{A_{V0} p_{A} p_{F}}{f_{O}^{2}}\Big|_{f_{O} \ge A_{V0} p_{A} \approx p_{X2}} \le \left|A_{\beta}\right| = \frac{p_{F}}{f_{O}},$$
(66)

$$A_{s} = A_{F} \| A_{\beta} \approx \frac{-A_{v_{0}}}{\left(1 + s/2\pi p_{x_{1}}\right) \left(1 + s/2\pi p_{x_{2}}\right)}.$$
(67)

Fig. 32. Pole-zero inverting mixed translation.

Current-limiting C_F with R_C in Fig. 32 reverses C_F 's pole in A_F and A_β . So A_F starts with $-A_{V0}$, A_F falls past A_V 's p_A and p_C when C_F shunts R_C and R_F , and z_{CX} reverses p_C when R_C current-limits C_F . A_β falls as C_F shorts and flattens to $-R_C/R_F$ past z_{CX} when C_F shorts with respect to R_C :

$$A_{F} \approx \left(\frac{R_{C} + Z_{C}}{R_{F} + R_{C} + Z_{C}}\right) \left(-A_{V}\right) = \frac{-A_{V0}\left(1 + s/2\pi z_{CX}\right)}{\left(1 + s/2\pi p_{A}\right)\left(1 + s/2\pi p_{C}\right)}$$
(68)

energize and *drain* L_X . The *duty-cycled inductance* L_{DO} is a d_{DO} translation of L_X with an R_L/D_{DO} that is usually negligible in light of R_{LD} . So the static components of d_{DO}, v_E, and v_D set L_{DO} in Fig. 36 to L_X/D_{DO}^2 and A_{SL} to

$$A_{SL(CCM)} \equiv \frac{V_{o}}{d_{e}'} \approx \frac{(V_{E} + V_{D})(1 + s/2\pi z_{C})(1 - s/2\pi z_{DO})}{D_{DO}\left[(s/2\pi p_{LC})^{2} + s/2\pi p_{LC}Q_{LC} + 1\right](1 + s/2\pi p_{SW})}.$$
 (81)

Fig. 36. Small-signal model of the switched inductor in CCM.

This gain drops as L_X opens with frequency because L_X feeds v_0 less current. A_{SL} also falls as C_0 shorts and steers current away from v_0 . The resulting *inductor* and *capacitor poles* p_L and p_C appear together as a double pole p_{LC} at the *transitional LC frequency* f_{LC} when L_{DO} 's impedance sL_{DO} overcomes C_0 's 1/s C_0 . p_C eventually fades past z_C when the *capacitor resistance* R_C current-limits C_0 .

Duty-cycled outputs connect L_X to v_0 only when draining L_X . So when the *switching frequency* f_{SW} is constant, extending t_E shortens L_X 's *drain time* t_D . Reducing drain current this way produces an inverting (out-ofphase) zero when the loss outpaces the gain. This *duty-cycled zero* z_{DO} normally appears above p_{LC} , but not by far. When present, z_{DO} is usually below p_{SW} .

 p_{LC} is challenging because it shifts phase 180° and peaks the gain. Since L_{DO} 's and C_O 's impedances cancel at f_{LC} , *inductor resistance* R_L and R_C impose a *series resistance* R_S that current-limits this peak. R_{LD} dampens it below this level because R_{LD} adds to the resistance that limits the LC current. But since R_L and R_C are usually low and R_{LD} is variable,

4.4. Current Mode

One way of eliminating p_{LC} is by regulating i_L . This way, the feedback translation that determines i_L is largely independent of sL_X . Removing this dependence to sL_X eliminates the LC interaction that produces p_{LC} .

A. Current Loop

 A_{IE} , the PWM, the switched inductor, and β_{IFB} in Fig. 39 close an inverting feedback loop that sets i_L . A_{IE} senses and amplifies the error that adjusts d_E' and i_L so v_{IFB} nears v_{EO} . This way, i_L is a reverse β_{IFB} translation of v_{EO} 's mirrored reflection, which is independent of L_X 's impedance sL_X :

$$i_{L} = \frac{V_{IFB}}{\beta_{IFB}} \approx \frac{V_{EO}}{\beta_{IFB}}.$$
(85)

This is like removing L_X from the circuit.

Fig. 39. Current-mode voltage controller.

B. Loop Gain

When the forward gain A_{IF} surpasses the feedback translation $A_{I\beta}$, the gain A_G to i_L follows $A_{I\beta}$'s $1/\beta_{IFB}$ up to the p_G that the loop's f_{I0dB} sets:

$$A_{\rm G} \equiv \frac{i_{\rm L}}{v_{\rm EO}} = A_{\rm IF} \parallel A_{\rm I\beta} \approx \frac{1/\beta_{\rm IFB}}{\left(1 + s/2\pi p_{\rm G}\right) \left(1 + s/2\pi p_{\rm SW}\right)} \,. \tag{86}$$

 A_G drops faster past p_{SW} when f_O surpasses f_{SW} . This β_{IFB} is usually constant. So the loop that sets i_L in Fig. 39 is basically a bandwidth-limited transconductor that d_{DO} in Fig. 40 duty-cycles.

 A_{LG} is the gain across β_{FB} , A_E , A_G , and d_{DO} into C_O with R_C and R_{LD} . A_{LG} starts with $A_{E0}A_{G0}D_{DO}R_{LD}\beta_{FB}$. A_{LG} falls past p_G , p_{CP} , and p_{SW} when $A_{IF}A_{PWM}A_{IL}$ is the part of A_{ILG} that determines feedback accuracy. This is because A_G follows $A_{I\beta}$ to the extent A_{IF} 's $A_{IE}A_{PWM}A_{IL}$ exceeds $A_{I\beta}$, which is to say, A_G approaches $1/\beta_{IFB}$ when A_{IF} increases. In other words, regulation accuracy scales with A_{IF} .

5.3. Inherent Stability

As a stabilizer, the aim of A_{IE} is to ensure A_{ILG} reaches f_{I0dB} with less than 180° of phase shift. But since A_{IL} 's z_{CP} already recovers 90° of the 180° that p_{LC} loses, A_{IE} 's role can be to increase gain, and that way, extend f_{I0dB} . But for f_{I0dB} to add no more than one pole p_G , f_{I0dB} should be a decade or more below A_{IE} 's bandwidth p_{IE1} and f_{SW} :

$$A_{ILG}\Big|_{f_{O} > p_{LC}} \approx \frac{A_{ILG0} p_{LC}^{2}}{z_{CP} f_{O}}\Big|_{f_{O} = A_{ILG0} \left(\frac{p_{LC}^{2}}{z_{CP}}\right) \approx f_{I0dB} = p_{G} \leq \frac{p_{IE1}}{10}, \frac{f_{SW}}{10}} = 1.$$
(96)

Since A_{ILG} rises and falls to 0 dB, A_{ILG} usually starts low, which means A_{IF0} is also low. So A_{IF} in Fig. 44 starts low, climbs past z_{CP} , falls past p_{LC} , and falls faster past p_{SW} . Although not always, A_{IF0} 's $A_{IE0}A_{PWM0}A_{IL0}$ is often lower than A_{IB} 's $1/\beta_{IFB}$. So A_G often starts with A_{IF0} .

Fig. 44. Inherent transconductance in CCM.

 A_G climbs with A_{IF} past z_{CP} until A_{IF} surpasses $A_{I\beta}$. This z_{CP} is usually low because C_O is high and R_{LD} is moderate. Since A_{IF} is the part of A_{ILG} that excludes β_{IFB} , A_{ILG0} is below 1 when A_{IF0} surpasses $1/\beta_{IFB}$. So A_{IF} crosses $A_{I\beta}$ at a p_{X1} that is $1/A_{ILG0}$ times greater than z_{CP} :

$$A_{IF}\Big|_{f_{O} < p_{LC}} = A_{IE0} A_{PWM0} A_{IL0} \left(\frac{f_{O}}{z_{CP}}\right)\Big|_{f_{O} \ge \frac{z_{CP}}{A_{ILG0}} \approx p_{XI} > z_{CP}} \ge A_{I\beta} \approx \frac{1}{\beta_{IFB}}.$$
 (97)

Switched Inductors: Feedback Controller

$$\begin{split} f_{I0dB} &\approx A_{ILG0} \left(\frac{p_{CS}}{z_{CP}} \right) p_{IE1} = (100) \left(\frac{120}{64} \right) p_{IE1} = \frac{f_{SW}}{10} = 100 \text{ kHz} \\ \therefore \quad p_{IE1} = 530 \text{ Hz} \quad \text{and} \quad p_{IE2} \geq f_{I0dB} = 100 \text{ kHz} \\ A_{G0} &= \left(A_{IE0} A_{PWM0} A_{IL0} \right) \| \frac{1}{\beta_{IFB}} \\ &\approx \left[(190)(2)(140m) \right] \| 1 = 980 \text{ mA/V} \end{split}$$

6. Digital Control

Feedback controllers use the voltage or current they sense to generate a pulsing command. From this perspective, feedback controllers are *analog–digital converters* (ADC). Mostly *analog controllers* mix, amplify, and stabilize the feedback system in the analog domain and mostly *digital controllers* in the digital domain.

Conventional ADCs digitize the voltage or current that digital controllers sense. Clocked *digital-signal processors* (DSP) use this digital word to mix, amplify, stabilize, and drive the switched inductor. Like analog controllers, digital controllers set loop gains that reach 0 dB with less than 180° of phase, if possible, at the highest manageable f_{0dB} .

Fig. 47. Digital voltage-mode voltage controller.

6.1. Voltage Controller

Voltage-mode voltage controllers translate v_0 in Fig. 47 to v_{FB} with β_{FB} and v_{FB} into an N-bit digital word d_{1-N} with ADCs. DSPs mix and compare this word d_{1-N} with a reference word d_R and use the difference to output the pulsing command d_E' that adjusts i_L . This way, DSPs sense and amplify