Contents

Page
List of Figures V
List of Abbreviations vii

1. Negative Feedback 1
1.1. Model 1
1.2. Translations 2
1.3. Frequency Response 3
1.4. Stability 5
A. Gain Objective 5
B. Stability Criterion 5
C. Stabilization 6
D. Gain-Bandwidth Product 7
1.5. Loop Variations 8
A. Pre-Amplifier 8
B. Multiple Taps 8
C. Parallel Paths 9
D. Embedded Loops 9
2. Op-Amp Translations 10
2.1. Operational Amplifier 10
2.2. Operational Transconductance Amplifier 11
2.3. Feedback Translations 11
A. Non-Inverting Op Amp 11
B. Inverting Op Amp 13
C. Differential Op Amp 15
D. Tradeoffs 16
3. Stabilizers 17
3.1. Strategies 17
A. Type I: Dominant Pole 17
B. Type II: Pole-Zero Pair 18
C. Type III: Pole-Zero-Zero Triplet 18
3.2. Amplifier Translations 19
3.3. Feedback Translations 21
A. Non-Inverting 21
B. Inverting 23
3.4. Mixed Translations 27
A. Non-Inverting 27
B. Inverting 29
3.5. Tradeoffs 33
4. Voltage Control 33
4.1. Controller 34
A. Composition 34
B. Feedback Objectives 34
4.2. Loop Gain 35
4.3. Voltage Mode 37
A. Dominant Pole 37
B. Pole-Zero-Zero Triplet 39
C. Design Notes 40
4.4. Current Mode 41
A. Current Loop 41
B. Loop Gain 41
C. Stabilization 42
4.5. Discontinuous Conduction 44
A. Switched Inductor 44
B. Stabilization 45
5. Current Control 46
5.1. Controller 46
5.2. Transconductance Gain 47
5.3. Inherent Stability 48
5.4. Pole-Zero Stabilization 50
5.5. Discontinuous Conduction 51
6. Digital Control 53
6.1. Voltage Controller 53
6.2. Current Controller 54
6.3. Digital Response 54
A. Digital Gain 54
B. Digital Bandwidth 54
C. Limit Cycling 55
6.4. Tradeoffs 55
7. Summary 55

List of Figures

Page
Figure 1. Feedback actions. 1
Figure 2. Inverting feedback loop. 2
Figure 3. Closed-loop response with constant β_{FB}. 4
Figure 4. Closed-loop response with variable $\beta_{\text {FB }}$. 4
Figure 5. Unstable loop-gain response. 5
Figure 6. Closed-loop response. 6
Figure 7. Stable loop-gain response. 6
Figure 8. Single-pole response. 8
Figure 9. Pre-amplified feedback loop. 8
Figure 10. Feedback loop with multiple inputs and outputs. 9
Figure 11. Feedback loop with parallel paths. 9
Figure 12. Feedback loop with embedded loops. 10
Figure 13. Operational amplifier. 10
Figure 14. Operational transconductance amplifier. 11
Figure 15. Non-inverting (voltage-mixed) op amp. 12
Figure 16. Inverting (current-mixed) op amp. 13
Figure 17. Inverting (current-mixed) op-amp model. 13
Figure 18. Differential op amp. 15
Figure 19. Dominant-pole stabilization. 17
Figure 20. Pole-zero stabilization. 18
Figure 21. Pole-zero-zero stabilization. 18
Figure 22. Dominant-pole and pole-zero OTAs. 19
Figure 23. Pole-zero-zero OTA. 20
Figure 24. Pole-zero non-inverting feedback translation. 22
Figure 25. Pole-zero-zero non-inverting feedback translation. 22
Figure 26. Dominant-pole inverting feedback translation. 24
Figure 27. Pole-zero inverting feedback translation. 24
Figure 28. Pole-zero-zero inverting feedback translation. 25
Figure 29. Pole-zero non-inverting mixed translation. 28
Figure 30. Pole-zero-zero non-inverting mixed translation. 28
Figure 31. Dominant-pole inverting mixed translation. 30
Figure 32. Pole-zero inverting mixed translation. 30
Figure 33. Pole-zero-zero inverting mixed translation. 32
Figure 34. Voltage-mode voltage controller. 34
Figure 35. Duty-cycled command. 35
Figure 36. Small-signal model of the switched inductor in CCM. 36
Figure 37. Dominant-pole stabilization in CCM. 37
Figure 38. Pole-zero-zero stabilization in CCM. 39
Figure 39. Current-mode voltage controller. 41
Figure 40. Equivalent current-mode voltage controller. 42
Figure 41. Small-signal model of the switched inductor in DCM. 44
Figure 42. Current controller. 46
Figure 43. Current translation of the switched inductor in CCM. 47
Figure 44. Inherent transconductance in CCM. 48
Figure 45. Pole-zero transconductance in CCM. 50
Figure 46. Dominant-pole transconductance in DCM. 52
Figure 47. Digital voltage-mode voltage controller. 53
Figure 48. Digital current controller. 54

1.4. Stability

A. Gain Objective

The principal aim of a feedback loop is to set an so that is a reverse β_{FB} translation of s_{I} 's mirrored reflection. For A_{CL} to follow this translation, $1 / \beta_{\mathrm{FB}}$ should be lower than A_{FW}. But since gain is another goal, $1 / \beta_{\mathrm{FB}}$ should be one or greater. So in practice, $A_{F W}$ is usually higher than $1 / \beta_{F B}$ across frequencies of interest and β_{FB} is lower than or equal to 1 or 0 dB .

B. Stability Criterion

High $A_{L G}$ is desirable in feedback systems because amplifying S_{E} reduces the mismatch between S_{I} and S_{FB}. Translating so_{O} to S_{FB}, comparing S_{FB} to S_{I}, and amplifying the resulting s_{E} so this A_{LG} is high and s_{O} is accurate usually requires two or more stages. Since each stage incorporates one or more poles, finding two or more poles in A_{LG} is not uncommon.

In Fig. 5, to cite an example, A_{LG} 's zero- or low-frequency gain $\mathrm{A}_{\mathrm{LG} 0}$ is well above 0 dB . A_{LG} falls 20 dB per decade after p_{1} and another 20 dB per decade after p_{2}. A_{LG} crosses 0 dB at a unity-gain frequency $\mathrm{f}_{0 \mathrm{~dB}}$ that is higher than p_{1} and p_{2}. Since each pole reduces phase shift up to $90^{\circ}, \angle \mathrm{A}_{\mathrm{LG}}$ reaches -180° (at the inversion frequency $\mathrm{f}_{180^{\circ}}$) before A_{LG} crosses 0 dB .

Fig. 5. Unstable loop-gain response.
Since $A_{\text {LG }}$ inverts with -180° past $f_{180^{\circ}}, A_{L G}$ is -1 at $f_{0 d B}$. With this much phase shift, positive feedback peaks $A_{C L}$ at $f_{0 d B}$ towards infinity:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{CL}}=\mathrm{A}_{\mathrm{FW}} \| \frac{1}{\beta_{\mathrm{FB}}}=\left.\frac{\mathrm{A}_{\mathrm{FW}}}{1+\mathrm{A}_{\mathrm{LG}}}\right|_{\mathrm{A}_{\mathrm{LG}}=1 \angle 180^{\circ}}=\frac{\mathrm{A}_{\mathrm{FW}}}{1-1} \rightarrow \infty \tag{8}
\end{equation*}
$$

Since A_{V} 's $R_{I N}$ is very high, $\beta_{F B}$ is the v_{0} fraction that R_{2} sets across R_{1} :

$$
\begin{equation*}
\beta_{\mathrm{FB}} \equiv \frac{\mathrm{~V}_{\mathrm{FB}}}{\mathrm{v}_{\mathrm{O}}} \approx \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}} . \tag{20}
\end{equation*}
$$

So $A_{L G}$ is $A_{F W} \beta_{F B}$ and $A_{L G}$ reaches 0 dB at $\mathrm{A}_{\mathrm{LG} 0} \mathrm{p}_{\mathrm{A}}$ or $\mathrm{A}_{\mathrm{FW} 0} \beta_{\mathrm{FB}} \mathrm{P}_{\mathrm{A}}$:

$$
\begin{gather*}
\mathrm{A}_{\mathrm{LG}}=\mathrm{A}_{\mathrm{FW}} \beta_{\mathrm{FB}} \approx\left(\frac{\mathrm{~A}_{\mathrm{V} 0}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{A}}}\right)\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \tag{21}\\
\mathrm{f}_{\mathrm{odB}} \approx \mathrm{~A}_{\mathrm{LG} 0} \mathrm{p}_{\mathrm{A}}=\mathrm{A}_{\mathrm{FW} 0} \beta_{\mathrm{FB}} \mathrm{p}_{\mathrm{A}} \approx \mathrm{~A}_{\mathrm{V} 0}\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right) \mathrm{p}_{\mathrm{A}} . \tag{22}
\end{gather*}
$$

And the voltage gain A_{vo} to vo is A_{CL} 's $\mathrm{A}_{\mathrm{vo}}\| \|^{1 / \beta_{\mathrm{FB}}}$ up to $\mathrm{f}_{\mathrm{odB}}$:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{Vo}} \equiv \frac{\mathrm{v}_{\mathrm{O}}}{\mathrm{v}_{\mathrm{IN}}}=\mathrm{A}_{\mathrm{FW}} \| \frac{1}{\beta_{\mathrm{FB}}} \approx\left(\mathrm{~A}_{\mathrm{V} 0} \| \frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}\right)\left(\frac{1}{1+\mathrm{s} / 2 \pi \mathrm{f}_{\mathrm{odB}}}\right), \tag{23}
\end{equation*}
$$

which reduces to $1 / \beta_{\mathrm{FB}}{ }^{\prime} \mathrm{s}\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / \mathrm{R}_{1}$ up to $\mathrm{f}_{\text {odB }}$ when A_{FW} 's A_{Vo} is much greater than this $1 / \beta_{\mathrm{FB}}$.

Fig. 15. Non-inverting (voltage-mixed) op amp.

Example 1: Determine $\mathrm{A}_{\mathrm{FW} 0}, \beta_{\mathrm{FB}}, \mathrm{A}_{\mathrm{LG} 0}, \mathrm{f}_{\mathrm{odB}}, \mathrm{A}_{\mathrm{voo}}$, and $\mathrm{f}_{\mathrm{CL}(\mathrm{BW})}$ when A_{vo} is $100 \mathrm{~V} / \mathrm{V}, \mathrm{p}_{\mathrm{A}}$ is $10 \mathrm{kHz}, \mathrm{R}_{1}$ is $10 \mathrm{k} \Omega$, and R_{2} is $90 \mathrm{k} \Omega$.

Solution:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{FW} 0} \approx \mathrm{~A}_{\mathrm{V} 0}=100 \mathrm{~V} / \mathrm{V} \\
& \beta_{\mathrm{FB}} \approx \frac{\mathrm{R}_{1}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{10 \mathrm{k}}{10 \mathrm{k}+90 \mathrm{k}}=100 \mathrm{mV} / \mathrm{V} \\
& \mathrm{~A}_{\mathrm{LG} 0}=\mathrm{A}_{\mathrm{FW} 0} \beta_{\mathrm{FB}} \approx(100)(100 \mathrm{~m})=10 \mathrm{~V} / \mathrm{V} \\
& \mathrm{f}_{0 \mathrm{~dB}} \approx \mathrm{~A}_{\mathrm{LG} 0} \mathrm{p}_{\mathrm{A}} \approx(10)(10 \mathrm{k})=100 \mathrm{kHz}
\end{aligned}
$$

phase from shifting 180°. This way, A_{LG} follows A_{S} up to p_{1} and continues to fall after $z_{S 1}$ and $z_{S 2}$ in A_{S} counter the effects of p_{1} and p_{2} in $A_{L G}$.

Parasitic poles in A_{S} eventually limit A_{S} 's bandwidth. So after $\mathrm{Z}_{\mathrm{S} 1}$ and $\mathrm{z}_{\mathrm{S} 2}, \mathrm{~A}_{\mathrm{S}}$ flattens with $\mathrm{p}_{\mathrm{S} 2}$ and falls with $\mathrm{p}_{\mathrm{S} 3}$. Although $\mathrm{p}_{\mathrm{S} 2}$ and $\mathrm{p}_{\mathrm{S} 3}$ are not always apart, only one of these poles can be close to $f_{0 \mathrm{~dB}}$ for stability.

3.2. Amplifier Translations

An op amp can add $\mathrm{p}_{\mathrm{s} 1}$. This op amp, however, cannot be any op amp. This is because the low-frequency gain $\mathrm{A}_{\mathrm{S} 0}$ and $\mathrm{p}_{\mathrm{S} 1}$ that $\mathrm{A}_{\mathrm{V} 0}$ and p_{A} set should establish an $f_{0 \mathrm{~dB}}$ that keeps the feedback system stable:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{S}} \approx \frac{\mathrm{~A}_{\mathrm{v} 0}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{A}}} \tag{36}
\end{equation*}
$$

The OTAs in Fig. 22 can also add $\mathrm{p}_{\mathrm{S} 1} . \mathrm{A}_{\mathrm{S} 0}$ is the gain that A_{G} sets across R_{F}. In the first implementation, A_{S} falls past p_{F} when C_{F} shunts R_{F} :

$$
\begin{equation*}
A_{S} \approx A_{G}\left(R_{F} \| \frac{1}{S_{F}}\right)=\frac{A_{G} R_{F}}{1+\mathrm{sR}_{F} C_{F}}=\frac{\mathrm{A}_{\mathrm{G}} \mathrm{R}_{\mathrm{F}}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{F}}} \tag{37}
\end{equation*}
$$

Fig. 22. Dominant-pole and pole-zero OTAs.
Current-limiting C_{F} with R_{C} adds $\mathrm{Z}_{\mathrm{S} 1}$. With $\mathrm{R}_{\mathrm{C}}, \mathrm{A}_{\mathrm{S}}$ falls past p_{C} when C_{F} shunts R_{C} and R_{F} before parasitic capacitance C_{X} at vo shunts R_{F}. p_{C} eventually fades past $z_{C X}$ when C_{F} shorts with respect to R_{C}. Once shorted, As flattens to $A_{G}\left(R_{F} \| R_{C}\right)$ and later falls past po when C_{X} shunts $R_{F} \| R_{C}$:

$$
\begin{aligned}
A_{S} & =A_{G}\left[R_{F}\left\|\left(Z_{F}+R_{C}\right)\right\| Z_{X}\right] \\
& =\frac{A_{G} R_{F}\left(1+\mathrm{sC}_{F} R_{C}\right)}{\mathrm{s}^{2} R_{C} C_{F} R_{F} C_{X}+\mathrm{s}\left[\left(\mathrm{R}_{F}+R_{C}\right) C_{F}+R_{F} C_{X}\right]+1}
\end{aligned}
$$

Fig. 31. Dominant-pole inverting mixed translation.
A_{S} follows A_{F} 's $\mathrm{A}_{\mathrm{V} 0}$ until A_{β} drops below $\mathrm{A}_{\mathrm{V} 0}$ at $\mathrm{p}_{\mathrm{X} 1}$. With two poles in A_{F} and one in A_{β}, A_{F} falls faster than A_{β}. As a result, A_{S} falls with A_{β} past $\mathrm{p}_{\mathrm{X} 1}$ until A_{F} falls below A_{β} at $\mathrm{p}_{\mathrm{X} 2}$. This way, $\mathrm{A}_{\mathrm{S} 0}$ is $-\mathrm{A}_{\mathrm{V} 0}, \mathrm{p}_{\mathrm{S} 1}$ is $\mathrm{p}_{\mathrm{X} 1}$, and $p_{S 2}$ is $p_{\mathrm{X} 2}$, but only when A_{β} 's projection to $\mathrm{p}_{\mathrm{X} 1}$ precedes p_{A} and p_{F} and A_{F} 's projection to $\mathrm{p}_{\mathrm{X} 2}$ exceeds $\mathrm{p}_{\mathrm{X} 1}$:

$$
\begin{gather*}
\left.\left|\mathrm{A}_{\beta}\right| \approx \frac{1}{\mathrm{SR}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}}\right|_{\mathrm{f}_{\mathrm{o}} \geq \frac{1}{2 \pi \mathrm{~A}_{\mathrm{V} 0} \mathrm{R}_{\mathrm{F}} \mathrm{C}_{\mathrm{F}}}=\frac{\mathrm{p}_{\mathrm{F}}}{\mathrm{~A}_{\mathrm{V} 0}} \approx \mathrm{p}_{\mathrm{X} 1}} \leq\left|\mathrm{A}_{\mathrm{F}}\right|_{\mathrm{f}_{0}<\mathrm{p}_{\mathrm{A}}} \approx \mathrm{~A}_{\mathrm{V} 0}, \tag{65}\\
\left.\left|\mathrm{~A}_{\mathrm{F}}\right|_{\mathrm{f}_{\mathrm{O}}>\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{F}}} \approx \frac{\mathrm{~A}_{\mathrm{V} 0} \mathrm{p}_{\mathrm{A}} \mathrm{p}_{\mathrm{F}}}{\mathrm{f}_{\mathrm{O}}^{2}}\right|_{\mathrm{f}_{\mathrm{o}} \geq \mathrm{A}_{\mathrm{V} 0} \mathrm{p}_{\mathrm{A}} \approx \mathrm{p}_{\mathrm{X} 2}} \leq\left|\mathrm{A}_{\beta}\right|=\frac{\mathrm{p}_{\mathrm{F}}}{\mathrm{f}_{\mathrm{O}}}, \tag{66}
\end{gather*}
$$

$$
\mathrm{A}_{\mathrm{S}}=\mathrm{A}_{\mathrm{F}} \| \mathrm{A}_{\beta} \approx \frac{-\mathrm{A}_{\mathrm{v} 0}}{\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{x} 1}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{x} 2}\right)}
$$

Fig. 32. Pole-zero inverting mixed translation.
Current-limiting C_{F} with R_{C} in Fig. 32 reverses C_{F} 's pole in A_{F} and A_{β}. So A_{F} starts with $-A_{V 0}, A_{F}$ falls past A_{V} 's p_{A} and p_{C} when C_{F} shunts R_{C} and R_{F}, and z_{CX} reverses p_{C} when R_{C} current-limits C_{F}. A_{β} falls as C_{F} shorts and flattens to $-R_{C} / R_{F}$ past $z_{C X}$ when C_{F} shorts with respect to R_{C} :

$$
\begin{equation*}
A_{F} \approx\left(\frac{R_{C}+Z_{C}}{R_{F}+R_{C}+Z_{C}}\right)\left(-A_{V}\right)=\frac{-A_{V 0}\left(1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{CX}}\right)}{\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{A}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{C}}\right)} \tag{68}
\end{equation*}
$$

energize and drain L_{X}. The duty-cycled inductance L_{DO} is a d_{DO} translation of L_{X} with an $R_{L} / D_{D O}$ that is usually negligible in light of $R_{L D}$. So the static components of $d_{D O}, v_{E}$, and v_{D} set $L_{D O}$ in Fig. 36 to $L_{X} / D_{D O}{ }^{2}$ and $A_{S L}$ to

$$
\begin{equation*}
\mathrm{A}_{\mathrm{SL}(C C M)} \equiv \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{~d}_{\mathrm{e}}{ }^{\prime}} \approx \frac{\left(\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{D}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{C}}\right)\left(1-\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{DO}}\right)}{\mathrm{D}_{\mathrm{DO}}\left[\left(\mathrm{~s} / 2 \pi \mathrm{p}_{\mathrm{LC}}\right)^{2}+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{LC}} \mathrm{Q}_{\mathrm{LC}}+1\right]\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{SW}}\right)} . \tag{81}
\end{equation*}
$$

Fig. 36. Small-signal model of the switched inductor in CCM.
This gain drops as L_{x} opens with frequency because L_{X} feeds vo less current. A AL also falls as C_{O} shorts and steers current away from v_{O}. The resulting inductor and capacitor poles p_{L} and p_{C} appear together as a double pole p_{LC} at the transitional LC frequency f_{LC} when L_{DO} 's impedance $\mathrm{sL}_{\mathrm{DO}}$ overcomes Co^{\prime} 's $1 / \mathrm{sC} \mathrm{C}_{\mathrm{o}} . \mathrm{p}_{\mathrm{C}}$ eventually fades past z_{C} when the capacitor resistance R_{C} current-limits Co_{o}.

Duty-cycled outputs connect $\mathrm{L} x_{x}$ to vo only when draining Lx_{x}. So when the switching frequency f_{Sw} is constant, extending t_{E} shortens $\mathrm{Lx}^{\prime} \mathrm{s}$ drain time t_{D}. Reducing drain current this way produces an inverting (out-ofphase) zero when the loss outpaces the gain. This duty-cycled zero Z_{DO} normally appears above p_{LC}, but not by far. When present, z_{DO} is usually below psw.
p_{LC} is challenging because it shifts phase 180° and peaks the gain. Since L_{DO} 's and Co_{o} 's impedances cancel at f_{LC}, inductor resistance R_{L} and R_{C} impose a series resistance R_{S} that current-limits this peak. R_{LD} dampens it below this level because $R_{L D}$ adds to the resistance that limits the $L C$ current. But since R_{L} and R_{C} are usually low and $R_{L D}$ is variable,

4.4. Current Mode

One way of eliminating $p_{L C}$ is by regulating i_{L}. This way, the feedback translation that determines i_{L} is largely independent of sL_{x}. Removing this dependence to sL_{X} eliminates the LC interaction that produces p_{LC}.

A. Current Loop

$\mathrm{A}_{\text {IE }}$, the PWM, the switched inductor, and $\beta_{\text {IFB }}$ in Fig. 39 close an inverting feedback loop that sets i_{L}. $\mathrm{A}_{\text {IE }}$ senses and amplifies the error that adjusts d_{E} and i_{L} so $v_{\text {IFb }}$ nears $v_{\text {Eo }}$. This way, i_{L} is a reverse $\beta_{\text {Ifs }}$ translation of $v_{\text {Eo' }} s$ mirrored reflection, which is independent of L_{x} 's impedance sL_{X} :

$$
\begin{equation*}
\mathrm{i}_{\mathrm{L}}=\frac{\mathrm{v}_{\mathrm{IFB}}}{\beta_{\mathrm{IFB}}} \approx \frac{\mathrm{v}_{\mathrm{EO}}}{\beta_{\mathrm{IFB}}} . \tag{85}
\end{equation*}
$$

This is like removing L_{X} from the circuit.

Fig. 39. Current-mode voltage controller.

B. Loop Gain

When the forward gain A_{IF} surpasses the feedback translation $\mathrm{A}_{\mathrm{I} \beta}$, the gain A_{G} to i_{L} follows A_{I} 's $1 / \beta_{\mathrm{IFB}}$ up to the p_{G} that the loop's $\mathrm{f}_{\text {IodB }}$ sets:

$$
\begin{equation*}
A_{G} \equiv \frac{i_{L}}{v_{\mathrm{EO}}}=\mathrm{A}_{\mathrm{IF}} \| \mathrm{A}_{\mathrm{I}} \approx \frac{1 / \beta_{\mathrm{IFB}}}{\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{G}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{SW}}\right)} . \tag{8}
\end{equation*}
$$

A_{G} drops faster past $p_{\text {Sw }}$ when f_{0} surpasses $f_{\text {Sw }}$. This $\beta_{\text {IFB }}$ is usually constant. So the loop that sets i_{L} in Fig. 39 is basically a bandwidth-limited transconductor that d_{DO} in Fig. 40 duty-cycles.
$A_{L G}$ is the gain across $\beta_{F B}, A_{E}, A_{G}$, and $d_{D O}$ into C_{o} with R_{C} and $R_{L D}$. A_{LG} starts with $\mathrm{A}_{\mathrm{E} 0} \mathrm{~A}_{\mathrm{G} 0} \mathrm{D}_{\mathrm{DO}} \mathrm{R}_{\mathrm{LD}} \beta_{\mathrm{FB}}$. A_{LG} falls past $\mathrm{p}_{\mathrm{G}}, \mathrm{p}_{\mathrm{CP}}$, and p_{SW} when
$\mathrm{A}_{\text {IF }} \mathrm{A}_{\text {PWM }} \mathrm{A}_{\text {IL }}$ is the part of $\mathrm{A}_{\text {ILG }}$ that determines feedback accuracy. This is because A_{G} follows $\mathrm{A}_{I \beta}$ to the extent $\mathrm{A}_{I F}$'s $\mathrm{A}_{\mathrm{IE}} \mathrm{A}_{\text {PWM }} \mathrm{A}_{I L}$ exceeds $\mathrm{A}_{I \beta}$, which is to say, A_{G} approaches $1 / \beta_{\text {IFB }}$ when $\mathrm{A}_{\text {IF }}$ increases. In other words, regulation accuracy scales with A_{IF}.

5.3. Inherent Stability

As a stabilizer, the aim of $\mathrm{A}_{\text {IE }}$ is to ensure $\mathrm{A}_{\text {ILG }}$ reaches $\mathrm{f}_{\text {IodB }}$ with less than 180° of phase shift. But since $A_{I L} ' s z_{C P}$ already recovers 90° of the 180° that p_{LC} loses, A_{IE} 's role can be to increase gain, and that way, extend $\mathrm{f}_{\mathrm{IOdB}}$. But for $\mathrm{f}_{\text {IodB }}$ to add no more than one pole p_{G}, $\mathrm{f}_{\text {IodB }}$ should be a decade or more below A_{IE} 's bandwidth $\mathrm{p}_{\mathrm{IE} 1}$ and f_{Sw} :

$$
\begin{equation*}
\left.\left.\mathrm{A}_{\mathrm{ILG}}\right|_{\mathrm{f}_{\mathrm{O}}>\mathrm{p}_{\mathrm{LC}}} \approx \frac{\mathrm{~A}_{\mathrm{ILG} 0} \mathrm{p}_{\mathrm{LC}}{ }^{2}}{\mathrm{z}_{\mathrm{CP}} \mathrm{f}_{\mathrm{O}}}\right|_{\mathrm{f}_{\mathrm{O}}=\mathrm{A}_{\mathrm{ILG} 0}\left(\frac{p_{\mathrm{LC}}{ }^{2}}{z_{\mathrm{CP}}}\right) \approx \mathrm{f}_{\mathrm{IOdB}}=\mathrm{p}_{\mathrm{G}} \leq \frac{\mathrm{p}_{\mathrm{IEI}}}{10}, \frac{\mathrm{f}_{\mathrm{SW}}}{10}}=1 . \tag{96}
\end{equation*}
$$

Since $A_{\text {ILG }}$ rises and falls to $0 \mathrm{~dB}, \mathrm{~A}_{\text {ILG }}$ usually starts low, which means $\mathrm{A}_{\text {IFo }}$ is also low. So $\mathrm{A}_{\text {IF }}$ in Fig. 44 starts low, climbs past z_{CP}, falls past pLC, and falls faster past psw. Although not always, $\mathrm{A}_{\text {IFo }}$'s $\mathrm{A}_{\text {IE0 }} \mathrm{A}_{\text {PWm }} \mathrm{A}_{\text {IL0 }}$ is often lower than $A_{I \beta}$'s $1 / \beta_{\text {IFB. }}$. So A_{G} often starts with $\mathrm{A}_{\mathrm{IF})}$.

Fig. 44. Inherent transconductance in CCM.
A_{G} climbs with $\mathrm{A}_{\text {IF }}$ past z_{CP} until A_{IF} surpasses A_{I}. This z_{CP} is usually low because C_{0} is high and $R_{L D}$ is moderate. Since $A_{I F}$ is the part of $A_{I L G}$ that excludes $\beta_{\text {IFB }}, \mathrm{A}_{\mathrm{ILG} 0}$ is below 1 when $\mathrm{A}_{\text {IF } 0}$ surpasses $1 / \beta_{\mathrm{IFB}}$. So A_{IF} crosses $A_{I \beta}$ at a $p_{X 1}$ that is $1 / \mathrm{A}_{\mathrm{ILG} 0}$ times greater than Z_{CP} :

$$
\begin{equation*}
\left.\mathrm{A}_{\mathrm{IF}}\right|_{\mathrm{f}_{\mathrm{O}}<\mathrm{P}_{\mathrm{LC}}}=\left.\mathrm{A}_{\mathrm{IE} 0} \mathrm{~A}_{\mathrm{PWM0}} \mathrm{~A}_{\mathrm{IL} 0}\left(\frac{\mathrm{f}_{\mathrm{O}}}{\mathrm{z}_{\mathrm{CP}}}\right)\right|_{\mathrm{f}_{0} \geq \frac{z_{\mathrm{CP}}}{\mathrm{~A}_{\mathrm{HLG}}} \approx \mathrm{p}_{\mathrm{XI} 1}>\mathrm{ZCP}} \geq \mathrm{A}_{\mathrm{IP}} \approx \frac{1}{\beta_{\mathrm{IFB}}} . \tag{97}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{I} 0 \mathrm{~dB}} \approx \mathrm{~A}_{\mathrm{ILG} 0}\left(\frac{\mathrm{p}_{\mathrm{CS}}}{\mathrm{z}_{\mathrm{CP}}}\right) \mathrm{p}_{\mathrm{IE} 1}=(100)\left(\frac{120}{64}\right) \mathrm{p}_{\mathrm{IE} 1} \equiv \frac{\mathrm{f}_{\mathrm{SW}}}{10}=100 \mathrm{kHz} \\
& \therefore \quad \mathrm{p}_{\mathrm{IE} 1}=530 \mathrm{~Hz} \quad \text { and } \quad \mathrm{p}_{\mathrm{IE} 2} \geq \mathrm{f}_{\mathrm{I} 0 \mathrm{~dB}}=100 \mathrm{kHz} \\
& \mathrm{~A}_{\mathrm{G} 0}=\left(\mathrm{A}_{\mathrm{IE} 0} \mathrm{~A}_{\mathrm{PWM} 0} \mathrm{~A}_{\mathrm{IL} 0}\right) \| \frac{1}{\beta_{\mathrm{IFB}}} \\
& \quad \approx[(190)(2)(140 \mathrm{~m})] \| 1=980 \mathrm{~mA} / \mathrm{V}
\end{aligned}
$$

6. Digital Control

Feedback controllers use the voltage or current they sense to generate a pulsing command. From this perspective, feedback controllers are analogdigital converters (ADC). Mostly analog controllers mix, amplify, and stabilize the feedback system in the analog domain and mostly digital controllers in the digital domain.

Conventional ADCs digitize the voltage or current that digital controllers sense. Clocked digital-signal processors (DSP) use this digital word to mix, amplify, stabilize, and drive the switched inductor. Like analog controllers, digital controllers set loop gains that reach 0 dB with less than 180° of phase, if possible, at the highest manageable $\mathrm{f}_{0 \mathrm{~dB}}$.

Fig. 47. Digital voltage-mode voltage controller.

6.1. Voltage Controller

Voltage-mode voltage controllers translate v_{O} in Fig. 47 to v_{FB} with β_{FB} and v_{FB} into an N -bit digital word $\mathrm{d}_{1-\mathrm{N}}$ with ADCs. DSPs mix and compare this word $d_{1-\mathrm{N}}$ with a reference word d_{R} and use the difference to output the pulsing command d_{E} that adjusts i_{L}. This way, DSPs sense and amplify

