CCM Switched-inductor Converter-efficiency Performance across Process Nodes

Luke Milner, *Student Member*, *IEEE*, and Gabriel A. Rincón-Mora, *Fellow*, *IEEE* Georgia Tech Analog, Power, and Energy IC Research

Objective: To assess the impact of process technology on the (efficiency) performance of switched-inductor dc-dc converters.

<u>Abstract</u>: The table below compares the effects of decreasing L_{MIN} (i.e., increasing C_{OX} and therefore increasing K') on the loss mechanisms and resulting peak and full-load efficiencies η_P and η_{FL} of a 10-MHz buck converter in CCM. The comparison does not apply to (a) DCM because conduction losses P_C in DCM contribute less to the total losses and do not relate to I_{OUT} in the same way as in CCM or (b) speed because a lower L_{MIN} could increase f_{0dB} and f_{SW} (under hysteretic control) and therefore reduce output ripple.

Observations: P_C decreases with a lower L_{MIN} because a higher K' decreases R_{DSON} , but not as fast because the breakdown voltage V_{GSS} of a smaller L_{MIN} decreases gate-drive voltage V_{GST} , plus the total resistance includes the interconnecting metal and the inductor's ESR, which do not scale with L_{MIN} . Driver losses P_D decrease with a lower L_{MIN} because, while shoot-through losses P_{ST} increase because K' reduces R_{DSON} , larger gate-charge losses P_{GC} decrease more because reductions in L_{MIN} and transistor widths W overwhelm the rise in C_{OX} . Overlap and quiescent losses P_{OV} and P_Q do not scale with L_{MIN} (if f_{OdB} and f_{SW} remain unchanged).

Conclusions: With optimal W, because both P_C and P_D decrease with a lower L_{MIN} , η_P (which occurs at the edge of DCM) increases by roughly 1.32% for every 50% (i.e., 2×) reduction in L_{MIN} at 1.8 V, and less (by 0.85%) at higher voltages (at 3.6 V) because P_O is higher and losses therefore become a smaller fraction of η_P (which is why η_P is generally higher at higher voltages). A larger (non-optimal) W can improve η_{FL} (e.g., at 2 A), where P_C dominates, by 15% while lowering η_P by less than 2%. Interestingly, the optimal aspect ratio W/L used for each technology and output voltage combination resulted in nearly the same value in all cases.

Technology	0.18µm [1]		0.35µm [2]		0.6µm [3]	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
k' (μC _{ox} /2) (μA/V ²)	171	37	89	33	58	19
R _{DSON} (2.7V) (kΩ/sq.)	-	-	4.6	16	6.6	21
R _{DSON} (4.2V) (kΩ/sq.)	3.3 (@1.8V)	13 (@1.8V)	4.1 (@3.3V)	13 (@3.3V)	5.2	15
C _{ox} (fF/μm²)	8.4	8.4	4.5	4.5	2.4	2.4
Nom. Voltage (Thick Ox.)	1.8V (3.3V)	1.8V (3.3V)	3.3V (5V)	3.3V (5V)	5V	5V

Technology		0.18µm (A) [1]		0.35µm (A) [2]		0.6µm (B) [3]		
Efficiency (E)	Efficiency (E) Pov		100%		100%		100% (6.2mW at 0.22A)	
	P _c (D)	70%		83%		100% (23mW at 0.22A)		
	R _{SW} (C)	71%	77%	85%	86%	100% (259mΩ)	100% (559mΩ)	
	P _D (F)	59%		77%		100% (15.3mW)		
	P _{ST} (G) 148% P _{GC} 38% Pq 100%		148%		121%		100% (2.9mW)	
			38%		66%		100% (12.5mW)	
)%	100%		100% (4.2mW)		
	P _{LEAK}	eak (1.8V) 91.50% (W/L) 3.97E+04		Neglected		Neglected		
	Peak (1.8V)			90.43%		89.11%		
	(W/L)			3.40E+04 94.13%		3.27E+04 93.27%		
	Peak (3.3V)							
	(W/L)			3.60E+04		3.40E+04		
Accuracy	Ripple	100%		100%		100%		
	Transient	100%		100%		100%		
		MM	MM-HV	MM	MM-HV	М	Μ	
Price (H)	Die	\$33,500	-	\$8,500	\$9,000	\$2,	000	
	Package	\$2,600	-	\$2,600	\$2,600	\$2,	600	
	Total	\$36,100	-	\$11,100	\$11,600	\$4,	600	

Assumptions:

- (A) The battery voltage (V_{IN}) is assumed to be 4.2V in every case even though additional circuits are needed to protect transistors in the some technologies. R_{DSON} is calculated using realistic gate-drive (e.g. 1.8V for TSMC 0.18µm).
- (B) Losses and resistance estimates are normalized to the values for 0.6µm.
- (C) Includes $100m\Omega$ for metal in addition to the resistance of the silicon.
- (D) Given for the value of I_{OUT} where efficiency is maximum. (Not the same for every technology.)
- (E) Switching frequency is 10MHz and converter always in continous-conduction mode.
- (F) P_D (Driver Power) is sum of P_{GC} (Gate Charge) and P_{ST} (Shoot Through).
- (G) No metal resistance is added to drivers, so P_{ST} scales slightly faster than R_{SW}.
- (H) Based on 4mm², except: TSMC 0.35µm HV minimum is 5mm², and TSMC 0.18µm minimum is 25mm².

References:

- [1] TSMC 0.18µm (MOSIS: T92Y MM NON EPI THK-MTL)
- [2] TSMC 0.35µm (MOSIS: V01C MM NON EPI)
- [3] AMI 0.6µm (MOSIS: VO1W)