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Abstract

Battery-operated portable devices, e.g., cell phones, pagers,
PDAs demand energy-efficient linear power amplifiers (PAs):
* Increases battery life
= Decreases cost (e.g., smaller heat sinks, less PCB real estate)

PA efficiency is enhanced by dynamically changing both the bias
current and supply voltage, on-the-fly:
= Dynamically adaptive DC-DC converter

The required PA supply voltage at any time can be higher or
lower than the battery voltage (Li-ion: 2.7-4.2 V):

= Non-inverting, buck-boost converter

Experimental results of a prototype PA:
= Meets CDMA 1S-95 ACPR requirements with 27 dBm maximum output power.

= Fijve times increase in battery life.
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CDMA PA Requirements

CDMA Signal

= Large peak to average ratio.

— PA designed for the peaks will be
inefficient at the valleys.

— Intuitively, goal should be to
maintain high efficiency throughout.

= Control the operation of the PA by
following the envelope for all power
levels.

Source Yaktage [v)

PA output power distribution profile

Power control is essential to CDMA
systems.

Maximum use with output power of
about 5 dBm.

= PA designed for peak power is
inefficient at back-off.

= Optimize in the vicinity of the peak.
For longer battery life, PA must be
efficient across wide loading
conditions.
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Power-Tracking, Efficient Linear PA
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= Why power-tracking?

* |t requires smaller converter bandwidth, therefore lower switching frequency,
hence incurs lower switching losses which extends battery life.

= Operation

= The RF signal is split between the PA and the power detector via the
directional coupler.

* The detector generates a DC voltage proportional to the RF power.

= Control signal for the converter which defines the PA supply voltage and bias
current.

= As input power varies, the converter control signal changes, ultimately

adjusting the PA supply voltage and bias current.
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Prototype System Implementation

Discrete non-inverting, synchronous, buck-boost converter.
Branch-line, micro-strip, directional coupler: 5 dB coupling coefficient.
Commercial RF power detector: LTC 5505-2.

RF PA evaluation module: NEC 55020279A LDMOS Transistor.

Dynamic supply
05-3.6V

Dynamic
supply

Rioap_pa g

Dynamic gate bias generation circuit Single ended Class-A Amplifier

Class AB and B modes of operation are not linear enough to meet the ACPR
requirements for CDMA.
= ACPR performance of class AB experimental PA is found to be 5 dB greater than
the desired value (-40 dBc).

Maximum efficiency (with desired linearity) is achieved by operating the PA on the
boundary of class A and AB.
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Non-inverting Buck-Boost Converter

Converter Design Considerations: Converter Loop Transfer Function
100
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Experimental Results — Converter

Converter Waveforms Dead-Time Control
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Efficiency for Various Output Voltages

= Most of the output ripple is due to the ESR
L. of the output capacitor.

= Reduce ESR to decrease the output ripple.

e

= Efficiency can be further improved with
= Switches of lower ON resistance.
o Vow =0V —o—Vew=10v = Advanced dead-time control techniques.

—O—Vout=20V —A—Vout=30V . . . .
X ZVouZ36V X Vout=40v = Zero-voltage switching during light loads.
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Experimental Results — Converter

Response to a Worst-Case Control Step = Converter responds to worst-case control reference

NPT within 300 psec
[T PR SRR SRR el lpres = Converter responds to a load step of 0-0.5 A within 200
Converter’s iy pusec having only 40 mV transient error in the output
output |
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: : Output voltage 0.4-4.0 V 0.4-4.0 V
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time 2200 LNR (2.4-3.4 V) <03 %
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\/ J Efficiency - 10-62 %
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= The error in low output voltages is due to the PCB parasitic resistance, offset voltage of the error amplifier
and finite loop-gain of the feedback loop.
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Experimental Results — PA System

ACPR: Measure of CDMA PA Linearity Gain Plot

ACPR is defined as the ratio of adjacent channel power to the —o— Fixed Supply
main channel power: ACPR, =P,/P; ACPR, = P,/P,.
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ACPR degradation is marginal for the dynamic o 16i57:46
supply PA with respect to the fixed-supply PA Converter responds within 200 psec
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Experimental Results — PA System

Efficiency Plot Weighted Efficiency Plot
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Conclusions

Efficiency improvement comparison

Schemes Mfixed_supply Tdyn_supply

AlGaAs/InGaAs PA with buck-converter 22% 11.2%
GaAs HBT PA with boost converter 3.89 % 6.38 % | Dynamic-Supply PA

LDMOS PA with buck-boost converter’ 1.74 % 8.67 %

Let’s talk!

*This work

Improvement in the average efficiency directly translates into five times

increase in battery life.

Power-tracking scheme requires a lower switching frequency converter.
= Increased light load efficient, thereby longer battery life.

Non-inverting, buck-boost converter is needed to operate the system at

its peak performance independent of the battery state —freshly charged

to close to fully-discharged condition—.

Future Work: Monolithic solution of the efficient linear power amplifier

system targeted for single-cell NiMH/NiCd battery (0.9 —-1.8 V).




