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AbstractAbstract

Power-aware, portable, electronic systems incorporate algorithms for 
dynamically changing the supply voltage depending on work-
load/throughput to extend battery life.

Single inductor, non-inverting buck-boost converters are best-suited to 
generate a voltage that is higher and lower than the battery supply, 
with minimum number of external components.

⇒Dynamically-Adaptive Buck-Boost Converters
High efficiency       ⇒ Improvement in battery life
Low voltage           ⇒ Single cell operation (Li-ion/NiCd/NiMH/Fuel Cell)
Integrated              ⇒ ↓ External components, ↓ Cost 
Low noise              ⇒ ↓ Interference

This work addresses the design challenges and trade-offs involved in 
realizing an integrated circuit (IC) for such a system with a wide range 
of supply voltage. 

Lower limit – Minimum supply voltage for circuits to be operational (1.4 V)
Higher limit – Process technology constraints (5 V)
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Understanding the LoadUnderstanding the Load

The output power of the power amplifier varies over a wide range
⇒ Output voltage range of the buck-boost converter

For WCDMA architecture, the power transmitted can increase or decrease by 
1-dB is every 666 µsec

⇒ Transient requirements
The RF power amplifier must meet its adjacent channel leakage ratio (ACLR) 
and error vector magnitude (EVM) specifications

⇒ Output voltage accuracy (DC, AC, Transient) requirements
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Requirements of the ConverterRequirements of the Converter
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Under light-load conditions, the 
converter can operated in buck-mode 
with a lower switching frequency, 
thereby reducing switching losses and 
consequently improving system 
efficiency.

Specifications Value 
Input voltage (VIN) 1.4 - 4.2 V 

Output voltage (VOUT) 0.4 - 4.0 V 
Load current [ILOAD = f (VOUT)] 0.03 - 0.5A 

Output voltage accuracy [f (VOUT)] 95 % 
Load resistance 10-15 Ohms 

Switching frequency 1 MHz ± 20% 
Closed-loop bandwidth ≥ 50 kHz  

1-dB step change response time ≤ 20 µsec 
Full-load efficiency ≥ 90 % 
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Tresponse 

Time 

1 dB 

Typical transient response

Linearity degradation
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Converter Block DiagramConverter Block Diagram

Salient Features
→ Voltage mode control
→ Type–III compensation
→ 1 MHz switching frequency
→ 0.8 µH power inductor 
→ 10 µF output capacitor with 

10 mΩ ESR

Buck/Buck-Boost/Boost Mode1 of operation for improved efficiency
Low power, sleep mode of operation for optimal efficiency 
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1 FA7618 controller as presented in US Patent No. 5,402,060 (1995) and LTC 3440 application notes (2003).
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Dynamic Sizing of Power MOSFETSDynamic Sizing of Power MOSFETS
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Dynamic sizing of Power MOSFETs allow minimization of conduction and 
switching losses for optimal efficiency at a given supply voltage.

Conduction loss ∝ Switch resistance  ∝1/W
Switching loss    ∝ Switch capacitance ∝ W

Power MOSFET sizing strategy
Aspect ratio for same switch ON-resistance with 

variation in supply voltage
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Gate Drive CircuitsGate Drive Circuits

Except the Boost PMOS switch, all the other 
switches can be driven by a chain of 
inverters.
For the output switch, transmission gate is 
used to reduce the voltage range for which 
body diode conducts.
The PMOS gate driver is powered from the 
output of the converter to ensure its 
operation.
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Designing the Error AmplifierDesigning the Error Amplifier

Requirements of the Op-amp
Input common-mode range (ICMR)

With |VTP|+VTN > VDD, the ICMR of NMOS 
and PMOS exist only close to supply and 
ground rail, respectively.
By dynamically shifting the input signal as a 
function of supply voltage the input signal a 
PMOS input stage can be used.

⇒ ICMR ↑, Noise ↑, Offset voltage ↑
Input Offset Voltage

Error in output voltage = Offset voltage ×
Closed loop gain of the converter.
Depending on the accuracy requirement, 
offset cancellation techniques can be used.  

DC Gain and Bandwidth
As DC gain ↑, steady-state error↓
UGFOPAMP >> Loop BWCONVERTER
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Reducing Noise Reducing Noise –– Spread Spectrum SwitchingSpread Spectrum Switching

Triangular Wave Generator
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Reduced Out-of-band distortion using switching
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The frequency of the triangular 
waveform generator is changed in a 
pseudo-random manner by varying 
the charging and discharging current 
of the capacitor.

By incorporating spread-spectrum 
switching, the ripple noise  voltage is 
distributed over a wider frequency 
band resulting in a lower side-lobe 
power with respect to the signal 
power.

⇒ Improved signal-to-noise ratio
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Simulation ResultsSimulation Results

Transient Response (VIN = 2V)
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SummarySummary

A top-down approach for integrated circuit design of key building blocks in a 
non-inverting buck-boost converter is discussed considering the challenges 
involved in realizing low voltage circuits.
Performance Enhancements

Efficiency Improvement
Buck/Buck-Boost/Boost Mode of operation
Dynamic sizing of power MOSFET switches
Decreasing/Increasing the switching frequency to minimize losses
depending on the battery  voltage

Accuracy
DC accuracy ⇒ Low –offset, wide input common-mode range op-amp 
for error amplifier
Ripple voltage/Noise spectrum ⇒ Spread-spectrum clocking
Transient accuracy  ⇒ Higher bandwidth, slew rate

Future Work: Layout and performance evaluation of the IC


