HOW-TO

A user-friendly boost DC-DC converter topology - it’s fast and widely stable

By Neeraj Keskar, Student Member, IEEE, and Gabriel A. Rincon-Mora, Senior Member, IEEE, Georgia Tech Analog and Power IC Design Lab

In battery-powered applications, like cell phones, PDAs, digital cameras, etc., an integrated dc-dc converter circuit solution offers several advantages in terms of cost, size, and design complexity. A critical hurdle in obtaining a fully integrated solution is the frequency compensation circuit, which has to be designed based on the values of external passive filter components (L-C) and associated parasitic elements, like the capacitor equivalent series resistance (ESR). The values of these off-chip components vary due to manufacturing tolerances, parameter drift, and design requirements. Capacitor ESR can vary by orders of magnitude, based on whether the capacitor is electrolytic or ceramic, not to mention its variation across temperature. As such, it is required to have a DC-DC controller IC that can provide fast control and stable operation with widely varying passive component values. In hysteretic control for buck converters, the regulated output voltage includes inductor current ripple information sensed indirectly through capacitor ESR, thus simplifying the loop characteristics. This circuit displays an inherently stable performance and any change in L-C values is accommodated through a change in the converter switching frequency, maintaining stable operation without the use of frequency compensation circuits [1-2]. However, in boost converters, which are used for stepping up single or dual-cell battery voltages for 3.3 or 5 V applications, the technique is not readily applicable because the inductor current cannot be determined entirely from the output voltage. A strategy that overcomes this limitation in boost converters is presented in Figure 1 [3].

Figure 1a Simplified schematic of the proposed boost converter

Top 5 Most Read How-To Stories
1. PoE not just "emerging" anymore
2. USB On-The-Go Presents Benefits, Challenges to Power Designers
3. New Power Modules Include Supply Voltage Sequencing
4. Managing Power in HA Gateway Designs
5. Power is digital

Top 5 Most Read Product Stories
1. PDUs for Pulsar UPSes extend flexibility
2. Power system extends IT backup from hours to days
3. Tiny gate drivers pack plenty of punch
4. Fuel gauge fields more I/O, all battery types
5. TI builds wireless VoIP solution using OMAP architecture

Top 5 Most Read News Stories
1. FCC takes up broadband over power lines
2. Power, thermal
PROPOSED STRATEGY

The inductor current, which cannot be determined completely through the capacitor voltage ripple, is independently sensed and regulated through a separate hysteretic loop, containing the main switch SM. The average inductor current \(I_L \) is raised above the minimum value required to support load current \(I_O \). Starting with a standard boost converter, an additional auxiliary switch \(S_A \) is added across the inductor \(L \). When the switch \(S_A \) is open, the excess inductor current (above the minimum value) tends to charge the capacitor \(C \) beyond the desired output voltage. This overcharge is sensed and prevented by comparator \(Q_1 \), which turns on switch \(S_A \) and shorts inductor \(L \).

Therefore, the inductor current freewheels, shutting off diode \(D \) and letting the capacitor \(C \) charge. Switch \(S_A \) is turned back off when the sensed capacitor voltage reaches the desired output voltage. This overcharge is sensed and prevented by comparator \(Q_1 \), which turns on switch \(S_A \) and shorts inductor \(L \).

The inductor current, which cannot be determined completely through the capacitor \(C \), is independently sensed and regulated through a separate hysteretic loop, containing the main switch \(SM \). The average inductor current \(I_L \) is raised above the minimum value required to support load current \(I_O \). Starting with a standard boost converter, an additional auxiliary switch \(S_A \) is added across the inductor \(L \). When the switch \(S_A \) is open, the excess inductor current (above the minimum value) tends to charge the capacitor \(C \) beyond the desired output voltage. This overcharge is sensed and prevented by comparator \(Q_1 \), which turns on switch \(S_A \) and shorts inductor \(L \).

PROPOSED STRATEGY

The inductor current, which cannot be determined completely through the capacitor voltage ripple, is independently sensed and regulated through a separate hysteretic loop, containing the main switch \(SM \). The average inductor current \(I_L \) is raised above the minimum value required to support load current \(I_O \). Starting with a standard boost converter, an additional auxiliary switch \(S_A \) is added across the inductor \(L \). When the switch \(S_A \) is open, the excess inductor current (above the minimum value) tends to charge the capacitor \(C \) beyond the desired output voltage. This overcharge is sensed and prevented by comparator \(Q_1 \), which turns on switch \(S_A \) and shorts inductor \(L \).

Therefore, the inductor current freewheels, shutting off diode \(D \) and letting the capacitor \(C \) charge. Switch \(S_A \) is turned back off when the sensed capacitor voltage reaches the desired output voltage. This overcharge is sensed and prevented by comparator \(Q_1 \), which turns on switch \(S_A \) and shorts inductor \(L \).

The additional power loss due to higher inductor current is kept low by maintaining the inductor current only 5% above the minimum required value (\(I_L_{\text{Min}} \)). A representative inductor current reference (\(V_{\text{REF}} \)) is derived from duty cycle \(D_A \), by means of a charge-pump-based duty-cycle-to-voltage demodulator shown in Fig. 1b. Capacitor \(C_1 \) is charged and discharged by complementarily switching current sources \(I_1 \) and \(I_2 \), which are gated by the controlling signal of switch \(S_A \). The average capacitor current equals zero and the voltage \(V_{\text{REF}} \) stabilizes when the total charge injected into the capacitor by \(I_1 \) during the off time of switch \(S_A \) balances the total charge removed by \(I_2 \) during the on time of switch \(S_A \). By setting \(I_2 \) to be 19 times larger than \(I_1 \), \(V_{\text{REF}} \) reaches steady state only when the off time of \(S_A \) (\(I_1 \) charging \(C_1 \)) is 19 times greater than the on time of \(S_A \) (\(I_2 \) discharging \(C_1 \)), i.e., duty cycle \(D_A \) is 5%. If the steady-state duty cycle \(D_A \) is increased, the load transient response of the converter improves at the cost of reduced power efficiency. With duty-cycle \(D_A \) chosen as 5%, the efficiency of the proposed converter is degraded by approximately 2% as compared to a standard boost converter, at a load of 0.5 A [3].

A fast, large increase in load current causes the output voltage to drop sharply because the inductor current is not high enough to support the increased load. Comparator \(Q_3 \) senses this voltage drop and turns on switch \(MPC_1 \), thereby raising the inductor current reference to the level that is required to support the maximum designed load current. The inductor current rises, in a single cycle of switch \(SM \), to the new reference and then charges the output capacitor, in a single cycle of switch \(S_A \), to \(V_{\text{REF}} \). Once the output voltage reaches \(V_{\text{REF}} \), switch \(M_1 \) turns off and the inductor current reference \(V_{\text{REF}} \) decays until the duty-cycle \(D_A \) reaches the 5% limit. The comparator is designed with an asymmetrical hysteresis, being narrower than that of \(Q_2 \) on the positive side and wider than that of \(Q_2 \) on the negative side.

Simulated waveforms in steady state for the operating conditions tabulated in Table 1, are shown in Fig. 2a. The output voltage \(V_{\text{OUT}} \) and inductor current \(I_L \) are seen to have two ripples viz. a high frequency ripple corresponding to the switching of switch \(SM \) and a larger, low frequency ripple corresponding to switching of switch \(S_A \). Transient waveforms for a step load change from 0.3 to 0.6 A are shown in Fig. 2b. Simulations show that stable converter operation is obtained for capacitor \(C \) and ESR ranges of 3-200µF and 0-35mΩ respectively, under inductor \(L \) variation of 1-30µH at 1 A load. The acceptable ESR range is extended further at lower load levels.

Welcome to our latest in the DesignLine series of sites. We provide practical information for automotive, power systems, and wireless networking engineers and system designers. Check out our other sites and let us know what ideas on articles or features you’d like to see.
Table 1. Simulation parameters and conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>1.5 V</td>
<td>V_C</td>
<td>3.3 ± 5%</td>
</tr>
<tr>
<td>I_0</td>
<td>0.1 A</td>
<td>L</td>
<td>2 μH</td>
</tr>
<tr>
<td>C</td>
<td>44 μF</td>
<td>ESR_C</td>
<td>20 mΩ</td>
</tr>
<tr>
<td>R_{ON}</td>
<td>0.1 Ω</td>
<td>R_{OFF}</td>
<td>0.1 Ω</td>
</tr>
<tr>
<td>D_{ON}</td>
<td>0.15 Ω</td>
<td>I_1</td>
<td>1 μA</td>
</tr>
<tr>
<td>I_0</td>
<td>19 μA</td>
<td>C_H</td>
<td>3 nF</td>
</tr>
<tr>
<td>V_{OUT}</td>
<td>25 mV</td>
<td>$I_{LEAKAGE}$</td>
<td>20 μA</td>
</tr>
<tr>
<td>M</td>
<td>0.264</td>
<td>R_d</td>
<td>0.1 Ω</td>
</tr>
</tbody>
</table>

| Simulator | Spectre | Technology | 0.5 μ CMOS |

Table 2a. Simulated waveforms in a steady state for the proposed circuit at $V_{IN}=1.5V$, $I_0=0.3A$, $V_{OUT}=3.3V$, $f_{SW(SA)}=5kHz$, $f_{SW(SM)}=1.6MHz$ with three switching cycles of switch SA showing V_{OUT}, I_L, V_{REF}, and VGA

Figure 2b. Step load from 0.3 to 0.6A, $V_{IN}=1.5V$, $V_{OUT}=3.3V$ showing I_L and V_{OUT}.

FUTURE WORK

The proposed technique provides stable performance and single-step transient response for a wide range of filter L-C values without the use of any external compensation circuit, thus suitable for integration. However, three main drawbacks
are evident. Firstly, the output voltage has a somewhat large steady-state ripple at a low frequency, which may lie in the audible range; secondly, the additional switch S_A, which carries current in steady state, can be quite large in size, and, thirdly, the additional inductor current leads to a reduction in power efficiency. The future work in this research involves addressing all these concerns while maintaining the aforementioned benefits. Currently, a prototype board is being built to verify the simulations through experimental results and to determine the L-C compliance of the proposed circuit.

References

For additional details, questions, and/or comments on this article, please contact us, the Georgia Tech Analog and Power IC Design Lab, at gtap@ece.gatech.edu.

More information about our research can be found at www.rincon-mora.com/research