0.6-µm CMOS Switched-Inductor Dual-Supply Hysteretic Current-Mode Buck Converter

Carlos J. Solis, Graduate Student Member, IEEE, Gabriel A. Rincón-Mora, Fellow, IEEE

Abstract—Microsystems can sense, process, information between nodes across hospitals, factories, and homes that can save lives, energy, and money. Unfortunately, supplying power with so much embedded functionality is challenging, because while some functions can survive higher noise levels and voltages, others cannot. Power supplies must therefore satisfy several independent outputs without consuming much power or occupying much space. A switched inductor is attractive in this respect because, with only one off-chip inductor, the system can output 80%-90% of the power it draws. Regulating multiple outputs with one inductor, however, links several feedback loops and their reactions to individual and combined loads. The sacrifice for this is usually accuracy in the form of response time. The single-inductor dual-output buck converter presented here uses a hysteretic current loop for this reason: to accelerate the response of the loops used to regulate the outputs. The 0.6-µm CMOS prototype supplies 70 and 50 mA to 1.5- and 2.5-V outputs with 80%-88% power-conversion efficiency and responds to 45-65-mA load dumps within 3.8 µs to keep 1.5 V within $\pm 5\%$ and 2.5 V within $\pm 7\%$.

Index Terms—DC–DC buck converter, cross regulation, hysteretic current-mode control, single-inductor multiple-output (SIMO), dual output, and switched-inductor power supply.

I. POWERING MULTIFUNCTIONAL MICROSYSTEMS

NETWORKED microsystems that sense, process, store, transmit, and receive information in hospitals, factories, farms, and homes can save lives, energy, and money [1]–[2]. But functions require power, and although digital-signal processors (DSPs) can tolerate some degree of noise in their supplies, sensors and analog–digital converters (ADCs) cannot [3]. Plus tiny batteries cannot sustain power for long, so even though DSPs, ADCs, and power amplifiers (PAs) can tolerate higher voltages, they (for the sake of saving energy) should not [4]. Efficient power-supply systems like Fig. 1 illustrates must therefore supply and regulate several outputs [5]–[6].

To save energy, microsystems often idle or disable noncritical blocks [7]. This means, responding to sensed events and load dumps requires short wake-up times. In other words,

Manuscript received .

power supplies must react quickly [8]. Unfortunately, linear regulators, which are fast, are typically inefficient [9], and switched inductors, which are efficient, are normally slow and bulky [10]–[11]. This is why the state of the art relies on one inductor for efficient power conversion and on one or several series low-dropout (LDO) regulators for fast response [12].

Switched inductors are slower than linear regulators because inductor voltages and inductances limit how fast inductor currents change. Plus, several switching cycles elapse before typical digital [13] and pulse-width modulated (PWM) [14]– [15] controllers can respond. Waiting for one switched inductor to respond to one of several loads also requires additional time [16]–[18]. So after one output's load imbalances the inductor, other outputs suffer the irregularity in the form of cross regulation [19]–[21].

The single-inductor dual-output buck converter presented here reduces cycling time by supplying all outputs within one energize/drain sequence of the inductor [22]–[26] and shortens response time by using a hysteretic oscillator to establish the inductor's current [27]. To demonstrate this, Sections II and III explain and show how the system supplies and regulates two outputs with one inductor. Sections IV and V then assess and compare performance with the state of the art.

II. SWITCHED-INDUCTOR DUAL-SUPPLY SYSTEM

The circuit in Fig. 2 essentially transforms inductor L_0 into an adjustable current source i_L that supplies and responds to the demands of two outputs. G_{OSC} is this current source, a transconductor whose current an amplifier A_E adjusts. So when first energizing L_0 , G_{OSC} 's v_{OSC} connects L_0 to v_{O1} until comparator CP_{O1} senses that L_0 satisfies v_{O1} . L_0 then connects to v_{O2} , and if L_0 's leftover energy is insufficient or excessive, A_E amplifies v_{O2} 's error to adjust and tune G_{OSC} 's i_L .

Functionally, G_{OSC} is an oscillating current source that implements the function of the current loop in this currentmode system. CP_{O1} closes the independent voltage loop that ensures v_{O1} peaks nears target v_{R1} . A_E closes the master loop that adjusts G_{OSC} 's current i_L to ensure v_{O2} nears target v_{R2} .

Drivers insert dead times between the conduction periods of adjacent switches M_N and M_P and M_{O1} and M_{O2} to keep them from shorting the input voltage v_{IN} , ground, and v_{O1} and v_{O2} . M_N 's and M_{O2} 's body terminals connect to their drains to ensure their body diodes conduct L_O 's i_L during M_P – M_N 's and M_{O1} – M_{O2} 's dead-time periods. M_N 's driver also opens M_N when L_O 's current reaches zero to keep L_O from conducting negative current. This way, in discontinuous-conduction mode (DCM), M_N does not consume unnecessary ohmic power. M_{O1} is an NFET because v_{IN} 's 2.6–4.2 V is high enough above v_{O1} 's

The authors are with the School of Electrical and Computer Engineering at the Georgia Institute of Technology in Atlanta, Georgia 30332-0250 U.S.A. (E-mail: csolis3@gatech.edu and Rincon-Mora@gatech.edu).

1.5 V to drive M_{O1} 's gate. M_{O2} is a PFET because ground is similarly low enough below v_{O2} 's 2.5 V to drive M_{O2} 's gate.

Fig. 2. Switched-inductor dual-supply hysteretic current-mode system.

A. Oscillating Current Source

<u>Continuous Conduction</u>: Comparator CP_{OSC} , M_P , M_N , L_O , and R_S implement a relaxation oscillator that ramps L_O 's current i_L between the hysteretic limits that CP_{OSC} and R_S establish and about the average that A_E 's v_{ER2} and R_S set. For this, CP_{OSC} closes M_P and M_{O1} to energize L_O from v_{IN} to v_{O1} with energize voltage v_{E1} or $v_{IN} - v_{O1}$ until i_L into R_S reaches CP_{OSC} 's upper threshold. This is why i_L in Fig. 3 climbs across energize period t_E . After that, CP_{OSC} opens M_P and closes M_N to drain L_O from ground into v_{O1} with drain voltage v_{D1} or $0 - v_{O1}$, and after i_L satisfies v_{O1} 's load, into v_{O2} with v_{D2} or $0 - v_{O2}$. i_L therefore falls across drain period t_D , first at v_{D1}/L_O and then at v_{D2}/L_O .

Fig. 3. Measured waveforms in continuous-conduction mode.

 R_S senses i_L and translates CP_{OSC} 's hysteresis V_{HYS} and A_E 's error v_{ERR2} into currents. i_L therefore oscillates across V_{HYS}/R_S , and if CP_{OSC} 's thresholds are symmetrical, about v_{ERR2}/R_S . This means, i_L 's ripple Δi_L is V_{HYS}/R_S , i_L 's average $i_{L(AVG)}$ is v_{ERR2}/R_S , and the oscillator's closed-loop gain G_{OSC} is

$$G_{OSC} \equiv \frac{I_{L(AVG)}}{V_{ERR2}} = \frac{1}{R_s}.$$
 (1)

Since L_O 's voltage determines how fast i_L crosses Δi_L , energize voltage v_E sets t_E , drain voltage v_D sets t_D , and together, they set oscillating period t_{OSC} to

$$t_{OSC} = t_E + t_D = \Delta i_L \left(\frac{L_O}{v_E} + \frac{L_O}{v_D} \right) = \left(\frac{V_{HYS}}{R_S} \right) \left(\frac{L_O}{v_E} + \frac{L_O}{v_D} \right).$$
(2)

Relative load levels dictate the fraction of time L_0 connects to each output. In Fig. 3, for example, i_{01} 's 60 mA is 75% of the combined 80-mA load, so v_{01} 's connection time t_{01} is roughly 75% of t_{OSC} , well past L_0 's energizing period t_E . As a result, energize voltage v_E is v_{E1} or $v_{IN} - v_{01}$ and drain voltage v_D is first v_{D1} or $-v_{01}$ and then v_{D2} or $-v_{02}$. When i_{02} is approximately higher than 50% of the combined load, v_{02} 's connection time t_{O2} extends into t_E , so v_E is first v_{E1} or $v_{IN} - v_{O1}$ and then v_{E2} or $v_{IN} - v_{O2}$, and v_D is v_{D2} or $-v_{O2}$. This shift in relative connectivity translates to a variation in the oscillating period t_{OSC} and resulting frequency f_{OSC} or $1/t_{OSC}$.

<u>Discontinuous Conduction</u>: When the combined load is light, the loop lowers v_{ERR2} to the point i_L reaches zero before i_LR_S reaches CP_{OSC} 's lower threshold. Once at zero, M_N 's driver opens M_N to keep i_L from reversing, so v_{O2} 's load discharges C_{O2} past 1.5 μ s in Fig. 4 until v_{ERR2} finally trips CP_{OSC} . In other words, i_L 's lower ripple produces an offset ($V_{HYS} - \Delta i_LR_S$)/A_E that v_{O2} 's fall must overcome to trip CP_{OSC} . This means, i_{O2} reduces v_{O2} 's lower peak when L_O is in discontinuous conduction – from 2.5 V in Fig. 3 to 2.44 V in Fig. 4 – and i_{O2} extends t_{OSC} to t_{OSC} ':

$$t_{\rm OSC}' = t_{\rm OSC} + t_{\rm DCM} = t_{\rm OSC} + \left(\frac{V_{\rm HYS} - \Delta i_{\rm L} R_{\rm S}}{A_{\rm E}}\right) \left(\frac{C_{\rm O2}}{i_{\rm O2}}\right).$$
(3)

 t_{OSC} ' therefore shortens and f_{OSC} in Fig. 5 climbs with i_{O2} until discontinuous time t_{DCM} in Fig. 4 vanishes, after which t_{OSC} ' levels to t_{OSC} and f_{OSC} to $1/t_{OSC}$.

Fig. 5. Measured oscillating frequency across modes under balanced loads.

<u>Bandwidth</u>: The comparator CP_{OSC}, drivers, switches M_P and M_N, and slew-rate of L_O's i_L determine the oscillator's response time t_R. Of these, CP_{OSC}, the drivers, and M_P and M_N respond in ns and i_L in μ s, so t_R mostly depends on L_O. When rising, energizing voltage v_E slews L_O, and when falling, drain voltage v_D slews L_O, so to account for both, t_R is roughly the average of rise and fall times t_{RI} and t_{FA} [30]:

$$t_{R} \approx \frac{t_{RI} + t_{FA}}{2} = \left(\frac{\Delta i_{L}}{2}\right) \left(\frac{L_{O}}{v_{E}} + \frac{L_{O}}{v_{D}}\right)$$
$$= \left(\frac{\Delta v_{ERR2}}{2R_{S}}\right) \left(\frac{L_{O}}{v_{E}} + \frac{L_{O}}{v_{D}}\right) \Big|_{\Delta v_{ERR2} < 2V_{HVS}} < t_{OSC}$$
(4)

So when the oscillator's input steps across a variation Δv_{ERR2} that is less than $2V_{HYS}$, t_R is less than t_{OSC} , which means i_L reaches its target within one cycle. In other words, the oscillator's bandwidth f_{BW} is as high as the oscillating frequency f_{OSC} , which is as high as any current loop in a dc–dc converter can claim. What is more, since switching converters cannot outpace their inductors, this oscillating current source is as fast as any current loop can ever be.

B. Independent Peak-Voltage Loop

 G_{OSC} in Fig. 2 feeds the independent feedback loop that regulates v_{O1} . Comparator CP_{O1} senses v_{O1} and v_{R1} to generate an error v_{ERR1} that determines when to disconnect L_0 from v_{O1} . This way, CP_{OSC} 's edge-triggered output v_{OSC} first sets M_{O1} 's flip-flop to connect L_0 to v_{O1} . L_0 's i_L raises v_{O1} past this point, past 0.2 μ s in Fig. 3, because i_L carries more energy than either output alone requires. When v_{O1} reaches v_{R1} , CP_{O1} resets M_{O1} 's flip-flop to disconnect L_0 from v_{O1} . v_{O1} 's load then discharges C_{O1} until v_{OSC} again connects L_0 to v_{O1} .

<u>Stability</u>: G_{OSC} 's i_L is essentially an oscillating current source that feeds the loop that regulates v_{O1} . CP_{O1} , M_{O1} 's flipflop, M_{O1} 's driver, and M_{O1} into C_{O1} shunt and delay feedback signals across this loop to establish poles. The delays across CP_{O1} , the flip-flop, and the driver, however, are a small fraction of the oscillating cycle, so their effects appear well above f_{OSC} . C_{O1} , on the other hand, is so high at 470 nF that C_{O1} delays and shunts v_{O1} signals past a pole p_{O1} that is well below f_{OSC} . So v_{O1} 's loop gain drops at 20 dB/decade past p_{O1} , and because no other delays disturb the fall, reaches unity with nearly 90° of phase margin, which means the loop is stable.

<u>Load Regulation</u>: Since v_{OSC} connects L_0 to v_{O1} and CP_{O1} disconnects L_0 from v_{O1} when v_{O1} rises to v_{R1} , CP_{O1} keeps v_{O1} 's peak near v_{R1} and v_{O1} 's load droops v_{O1} across what remains of t_{OSC} after v_{O1} 's connection time t_{O1} lapses. So as i_{O1} and i_{O2} together climb above 25 mA in Fig. 6, v_{O1} 's bottom and average levels droop to lower levels:

$$\mathbf{v}_{OI(AVG)} = \mathbf{v}_{R1} - \left(\frac{\mathbf{i}_{O1}}{2}\right) \left(\frac{\mathbf{t}_{OSC} - \mathbf{t}_{O1}}{\mathbf{C}_{O1}}\right).$$
 (5)

In discontinuous conduction, when i_{O1} and i_{O2} are both below 25 mA in Fig. 6, raising v_{O2} 's load reduces discontinuous time t_{DCM} in Fig. 4, which shortens t_{OSC} and the time v_{O1} 's load discharges C_{O1} . As a result, t_{OSC} 's reduction counters the effect of i_{O1} 's rise on v_{O1} to produce less variation in v_{O1} 's low and average values. This means, load regulation is worse in continuous conduction.

<u>Load-Dump Compensation</u>: Response time t_R in power supplies sets how long load dumps slew their outputs. So after a rising load dump $+\Delta i_{O1}$, the difference between the load and i_{O1} (which is equivalent to Δi_{O1}) discharges C_{O1} across t_R to produce a falling variation $-\Delta v_{LD}$ in v_{O1} . After a falling load dump $-\Delta i_{O1}$, the difference between i_{O1} and the load (which is equivalent to Δi_{O1}) charges C_{O1} to produce a similar rising variation $+\Delta v_{LD}$. Unfortunately, these load dumps are often fast and wide, so $\pm \Delta v_{LD}$ can be $\pm 7\%$ to $\pm 10\%$, high enough to overwhelm other effects and to, alone, limit a supply's accuracy [28]. This worsens when several outputs share one inductor because cycling between outputs extends t_R .

In this case, v_{O1} 's load regulation $-\Delta v_{LR}$ from Fig. 6 is significant by design. Δv_{LR} , however, does not affect $v_{O1(MIN)}$ because a fast rising load dump normally pulls v_{O1} well below $v_{R1} - \Delta v_{LR}$ to $v_{R1} - \Delta v_{LD}$. But since a falling load dump raises v_{O1} from its *loaded* level $v_{R1} - \Delta v_{LR}$, $-\Delta v_{LR}$ counters $+\Delta v_{LD}$ to reduce $v_{O1(MAX)}$ to $(v_{R1} - \Delta v_{LR}) + \Delta v_{LD}$. In other words, load regulation mitigates the effect of the falling load dump [28]– [29]. So adding a positive offset v_{OS} to v_{R1} that is similar, but opposite in magnitude to $-\Delta v_{LR}$ can reduce $v_{O1(MIN)}$ to $v_{OS} - \Delta v_{LD}$, and when v_{OS} matches Δv_{LR} , reduce v_{O1} 's total variation $\Delta v_{O1(MAX)}$ to

 $\Delta v_{O1(MAX)} \equiv v_{O1(MAX)} - v_{O1(MIN)} = \pm |\Delta v_{LD} - \Delta v_{LR}|.$ (6) This is why v_{R1} in Fig. 2 is slightly above 1.5 V and v_{O1} in Figs. 7 and 8 ripples about 1.5 V when loaded with 50 mA.

Fig. 7. Measured response to simultaneous rising 45-mA load dumps.

Fig. 8. Measured response to simultaneous falling 45-mA load dumps.

C. Master Voltage Loop

Since L_O carries more energy than either load requires, i_L satisfies all small-signal variations in v_{O1} 's load. Insufficient or excess current in L_O then produces small-signal alterations in v_{O2} much like small changes in v_{O2} 's load would. A_E in Fig. 2 senses these variations in v_{O2} to generate an error v_{ERR2} that adjusts G_{OSC} 's i_L until v_{O2} is again near its target v_{R2} .

Operationally, v_{OSC} first sets M_{O1} 's flip-flop to connect L_O to v_{O1} . When v_{O1} rises to v_{R1} , CP_{O1} resets M_{O1} 's flip-flop to disconnect L_O from v_{O1} and sets M_{O2} 's flip-flop to close M_{O2} and connect L_O to v_{O2} after a dead time that the drivers insert. During this dead time, M_{O2} 's body diode steers i_L into v_{O2} . v_{OSC} then resets M_{O2} 's flip-flop and sets M_{O1} 's flip-flop to reconnect L_O to v_{O1} and start another cycle.

<u>Stability</u>: As mentioned earlier, CP_{OSC} , M_P , M_N , and L_O realize an oscillator G_{OSC} whose output is a current i_L that ripples across CP_{OSC} 's V_{HYS}/R_S and about v_{ER2}/R_S . CP_{OSC} 's, M_P 's, and M_N 's delays are a small fraction of the oscillating period, so their effects are well above f_{OSC} . But L_O is high at 12 μ H, so L_O and the voltages that v_{IN} , v_{O1} , and v_{O2} impress across L_O limit how fast i_L responds to v_{ER2} variations. The resulting delay sets G_{OSC} 's bandwidth [30].

Because L_0 fully supplies v_{01} before feeding v_{02} , the effect of v_{01} 's loop on i_L is to sink or subtract a portion of i_L . In other words, i_{01} is essentially another load to L_0 . This means, the small-signal dynamics of v_{01} 's loop appear as additional load variations to the loop that senses v_{02} to adjust G_{OSC} 's i_L .

 A_E , G_{OSC} , and C_{O2} close the loop that feeds v_{O1} 's load and

regulates v_{02} . C_{02} is high at 560 nF to keep load dumps from deviating v_{02} too much. This means, C_{02} shunts v_{02} 's load at a low-frequency pole p_{02} . So to ensure the gain across the loop reaches unity at 20 dB/decade with nearly 90° of phase margin, A_E 's and G_{OSC} 's bandwidths are, by design, above the unity-gain frequency that C_{02} , by design, establishes.

<u>Load Regulation</u>: Since A_E amplifies v_{O2} 's error to continually adjust G_{OSC} 's i_L , v_{O2} 's average $v_{O2(AVG)}$ in Fig. 9 is near v_{R2} 's 2.5 V when L_O is in continuous conduction, when both load currents are above 25 mA. Below 25 mA, when L_O is in discontinuous conduction, i_L reaches zero before i_LR_S reaches CP_{OSC} 's lower threshold. v_{O2} 's load therefore continues to discharge C_{O2} until v_{O2} 's amplified error v_{ERR2} overcomes the difference. As a result, v_{O2} drops, and as the loads continue to lighten, i_L 's ripple diminishes and v_{O2} falls further.

Fig. 9. Second output's measured load regulation under balanced loads

D. Cross Regulation

Load Disparity: For good regulation performance, the system should be able to skip outputs that do not require energy. This is why v₀₁'s flip-flop in Fig. 2 does not set when both set and reset signals are high. This way, if CP₀₁ senses v₀₁ is already near or above v_{R1}, v_{OSC} cannot set M₀₁'s flip-flop to connect L₀ to v₀₁. The flip-flop's low output therefore sets v₀₂'s flipflop to close M₀₂ and connect L₀ to v₀₂. Skipping v₀₂ is more natural because, when v₀₁'s load is much greater than v₀₂'s load, L₀'s energy per cycle is not enough to satisfy v₀₁'s load. As a result, v₀₁ does not reach v_{R1} until the following cycle. Extending v₀₁'s connection time t₀₁ to t_{OSC} this way keeps L₀ from connecting to v₀₂ across that cycle.

When load currents match, however, both outputs share L_0 's current evenly, so v_{01} 's and v_{02} 's switching frequencies f_{01} and f_{02} match G_{OSC} 's oscillating frequency f_{OSC} in Fig. 5. When one load current is much lower than the other, however, the lighter load requires two or more cycles to droop its corresponding output to a level that warrants correction. As a result, the lightly loaded output skips cycles, like Figs. 10 and 11 show before 10 µs and Figs. 12 and 13 show after 40 µs. Although the variation in frequency is normally undesirable, this behavior is systemic, and therefore predictable and stable.

Fig. 13. Measured response to a falling 45-mA load dump at v_{02} .

When v_{02} 's load is 25 mA, for example, and v_{01} 's load exceeds 7 mA, i_{01} is high and close enough to i_{02} for v_{01} to demand current every oscillating cycle. This is why v_{01} 's f_{01} and v_{02} 's f_{02} in Fig. 14 (black traces) match i_L 's f_{OSC} above 7 mA when i_{02} is 25 mA. L_0 starts skipping v_{01} when i_{01} falls below 7 mA, when one cycle is enough to satisfy v_{01} for two cycles. This is why f_{01} falls under f_{02} .

Similarly, when i_{02} is 5 mA and i_{01} is less than 60 mA, i_{02} is close enough to i_{01} for v_{02} to demand current every cycle. f_{01} and f_{02} in Fig. 14 (gray traces) therefore match i_L 's f_{OSC} below 62 mA when i_{02} is 5 mA. L_0 starts skipping v_{02} above 62 mA because v_{01} 's demand is so much greater than v_{02} 's that v_{01} 's load sinks L_0 's i_L continuously across multiple cycles. In this case, v_{02} receives i_L every other cycle.

Load Dumps: When v_{O1} 's load i_{LD1} suddenly rises to a vastly higher level, L_O 's initial current cannot satisfy the higher load. CP_{O1} and the flip-flops in Fig. 2 therefore skip v_{O2} until i_L satisfies i_{LD1} . As a result, load dump Δi_{LD1} droops v_{O1} , like Fig. 10 shows, and v_{O2} indirectly. And because v_{O2} does not receive energy until L_O satisfies v_{O1} , v_{O2} recovers after v_{O1} does. But since G_{OSC} 's hysteretic loop responds within A_E and CP_{OSC} 's combined propagation delay, i_L rises quickly to

recover v_{01} within one oscillating cycle and recover v_{02} 3.8 μ s after v_{01} 's load dump when oscillating frequency is 760 kHz.

When a heavy load suddenly disappears from v_{01} , CP_{01} disconnects L_0 from v_{01} quickly enough to keep v_{01} in regulation. L_0 's excess current, however, charges C_{02} above v_{02} 's target v_{R2} , like Fig. 11 demonstrates. Like before, though, A_E and CP_{OSC} respond quickly to recover v_{02} 2.2 μ s after v_{01} 's falling load dump. In other words, v_{01} 's rising and falling load dumps, for the most part, only affect v_{02} , but the hysteretic loop is fast enough to recover v_{02} within 3.8 μ s.

Since the system always satisfies v_{01} first, fast and wide load dumps at v_{02} induce little to no effects on v_{01} . v_{02} 's rising and falling load dumps in Figs. 12 and 13, for example, lower and raise v_{02} out of regulation, but not v_{01} . And like before, the hysteretic loop recovers v_{02} within 2–3 µs.

Since A_E and CP_{OSC} 's combined delay is well within one oscillating cycle, v_{O1} 's and v_{O2} 's response to simultaneous load dumps in Figs. 7 and 8 is similar to the independent load dumps in Figs. 10–13. So v_{O1} again recovers within one oscillating cycle and v_{O2} within 1–3 µs.

III. IMPLEMENTATION

Feedback resistors R_{1T} , R_{1B} , R_{2T} , and R_{2B} in Fig. 15 translate reference voltages v_{R1} and v_{R2} to v_{01} 's and v_{02} 's actual targets v_{R1} and v_{R2} in Fig. 2. Comparator CP_{ZCS} opens M_N when i_L into M_N 's resistance reaches zero to keep i_L from reversing and push L_0 into discontinuous conduction. v_{01} 's CP_{01} incorporates hysteresis V_{H1} to keep noise in v_{01} from inadvertently tripping CP_{01} . V_{H1} , however, also keeps v_{01} 's ripple Δv_{01} from falling below V_{H1} 's lower threshold. This is acceptable because, with V_{H1} at 10 mV, load-dump effects in v_{01} overwhelm V_{H1} to determine v_{01} 's accuracy.

A. Current Sensor

The oscillator G_{OSC} in Fig. 2 requires a current sensor. For testing purposes, the current sensor is the off-chip filter network in Fig. 15. Here, R_{SI} and C_{SI} and R_{SO} and C_{SO} filter L_O and R_{ESR} 's voltage v_L into voltages v_{SI} and v_{SO} like L_O and R_{ESR} filter v_L into current i_L . So when R_SC_S and L_OR_{ESR} time constants match, $v_{SI} - v_{SO}$ is a linear translation of i_L [31].

 C_{FI} - R_{FI} and C_{FO} - R_{FO} high-pass filter v_{SI} and v_{SO} to keep their dc components from propagating through. v_{CM} is a bias dc voltage that establishes v_{FI} and v_{FO} 's common-mode level. So with an adjustable v_{CM} , v_{FI} and v_{FO} can be within the input common-mode range of the comparator they feed.

B. Summing Comparator

Reducing A_E 's gain to one in Fig. 2 amounts to adding v_{O2} 's error $v_{O2} - v_{R2}$ to CP_{OSC} 's inverting input v_I : $(v_{O2} - v_{R2}) - v_I$.

Summing comparator CP_E in Fig. 15 does this with $(v_{O2} - v_{R2})$ + $(v_{FO} - v_{FI})$, where $v_{FO} - v_{FI}$ is v_I in Fig. 2. But for the system to regulate v_{O2} about v_{R2} accurately, $v_{FO} - v_{FI}$'s dc component should be negligibly low. This is another reason why the current sensor high-pass filters v_{SI} 's and v_{SO} 's translation of i_L , to ensure $v_{FO} - v_{FI}$ is nearly zero at dc. This way, CP_E and the loop can keep v_{O2} near v_{R2} .

When L_0 is in discontinuous conduction, i_L reaches zero before i_L 's translation v_I in Fig. 2 reaches CP_{OSC} 's lower threshold. v_{O2} 's load therefore discharges C_{O2} until v_{O2} 's droop finally trips CP_{OSC} to start another cycle. When v_{O2} 's load is very light, discontinuous-conduction time t_{DCM} between cycles (from Fig. 4) is long. So if v_{O1} 's load suddenly rises, response time t_R is that much longer.

Feeding v_{O1} 's error $v_{O1} - v_{R1}$ into CP_E in Fig. 15 allows v_{O1} 's error to trip CP_E sooner for a faster response. In steady state, v_{O1} 's loop keeps v_{O1} near v_{R1} , so $v_{O1} - v_{R1}$ is low at dc. Since $v_{FO} - v_{FI}$ is also low at dc, CP_E keeps v_{O2} near v_{R2} .

C. Power Management

Resistances, switching gates, and the controller consume ohmic, gate-drive, and quiescent power P_R , P_G , and P_Q . So to minimize P_R and P_G , transistor channel lengths are minimum at 0.6 µm and widths are wide enough to balance their ohmic and gate-drive losses, and therefore, consume the least power [32]. This way, L_O 's series resistance 400 m Ω and other ohmic losses in P_R climb in Fig. 16 with load power from nearly zero to 22 mW, when the combined load is 200 mW. Logic and other gate-drive losses in P_G rise with f_{OSC} (from Fig. 5) in discontinuous conduction and flatten past 96 mW, when f_{OSC} settles in continuous conduction. CP_E , CP_{O1} , and CP_{ZCS} dissipate about 2 mW as P_O across load levels.

Like Fig. 17 shows, power-conversion efficiency η_C peaks at 88% when i_{O1} is 25 mA and i_{O2} is 43 mA, when the combined load is 145 mW. η_C remains above 85% when i_{O2} pulls at least 25 mA or 62 mW and above 80% when i_{O2} pulls more than 5 mA or 13 mW. η_C is generally higher when i_{O2} is greater than i_{O1} because M_{O2} 's current–voltage overlap loss is lower. This is because M_{O2} 's initial voltage when it shorts is about 0.65 V (across its body diode) and M_{O1} 's is about 1.65 V

Fig. 15. Prototyped 0.6-µm CMOS switched-inductor dual-supply hysteretic current-mode buck converter

(between v_{O1} and v_{O2} and M_{O2} 's body-diode voltage).

Fig. 17. Measured power-conversion efficiency across load levels.

IV. PROTOTYPE

Fig. 18. Prototyped 0.6-µm CMOS die and two-layer board.

Everything but the current-sensor network, inductor, output capacitors, and feedback resistors in Fig. 15 are in the 1.4 \times 2.0-mm² 0.6-µm CMOS die in Fig. 18. A finer-pitched CMOS process is possible, but also more costly, with lower breakdown voltages, and for proof of concept, unnecessary. The current sensor and feedback resistors are off chip for testing purposes. L₀ occupies 3.5 \times 2.7 \times 2.4 mm³ of the board shown and incorporates 400 m Ω of equivalent series resistance R_{ESR} . C₀₁ and C₀₂ each occupy 1.6 \times 0.81 \times 0.91 mm³ and incorporate 10 m Ω of series resistance.

<u>Accuracy</u>: Overall accuracy is the combined variation of a power-supply voltage in steady state across load levels and in response to load dumps. In this respect, v_{O1} 's worst-case variation with 470 nF across loads and in response to simultaneous and individual load dumps in Figs. 7–8 and 10–13 is \pm 78 mV or \pm 5% about 1.5 V. v_{O1} suffers little to no effects when v_{O2} 's load suddenly changes because the system satisfies v_{O1} before feeding v_{O2} . In other words, v_{O1} exhibits minimal cross-regulation effects.

 v_{O2} 's worst-case accuracy with 560 nF is +160/–177 mV or ±7% about 2.5 V. This variation is the result of individual load

dumps at v_{01} . v_{02} suffers these cross-regulation effects because v_{01} 's load dumps drain or oversupply L_0 before the system can feed v_{02} . v_{02} 's variation in response to v_{02} 's load dumps is lower at +135/–140 mV because v_{01} 's response time to v_{01} 's load dump delays v_{02} 's response.

Higher capacitance reduces v_{O1} 's and v_{O2} 's steady-state ripples and load-dump variations. But to keep C_{O1} 's and C_{O2} 's resistances R_{ESRO1} and R_{ESRO2} and their ohmic losses at similar levels with higher capacitance, C_{O1} and C_{O2} require more space. The alternative is higher capacitance with the same volume, and as a result, higher resistance and power. Another way of reducing ripples and voltage variations is by shortening the oscillating period, except raising the converter's switching frequency also increases gate-drive losses. In other words, the tradeoff for improved accuracy is either space or power losses.

 v_{O2} 's variation to simultaneous load dumps is lower at ±120 mV or ±5% because adding v_{O1} 's error into CP_E in Fig. 15 accelerates CP_E 's response. v_{O2} 's total negative error in Fig. 7, however, is -90 mV from load regulation in discontinuous conduction and -140 mV from load-dump response. In other words, accuracy is worse when traversing from discontinuous to continuous conduction because the effects of load regulation and load dumps add to -230 mV.

<u>Comparison</u>: These output-voltage variations $\Delta v_{O(MAX)}$ result because, while power supplies react, load dumps $\Delta i_{O(LD)}$ slew output capacitors C_O . Applications ultimately dictate the depth and rate of these load dumps. So engineers try to save the cost of silicon and board area by designing fast power supplies. That way, output capacitance can be low and C_O can occupy less space. In other words, response time t_R is the underlying design variable that sets accuracy.

When assessing technologies, comparing $\Delta v_{O(MAX)}$, $\Delta i_{O(LD)}$, and C_O can be misleading because the same design under different constraints produces different results. For example, a 100-mA load dump can vary the output of a 10-µs converter by 100 mV with 10 µF, 50 mV with 20 µF, and 25 mV with 40 µF. In other words, $\Delta v_{O(MAX)}$ for the same design and application can be any value C_O prescribes. This is why $\Delta v_{O(MAX)}$ here is 2× to 3× higher than for competing technologies in Table I, because C_O is more than 10× lower. In

	[33]	[16]	[34]	[35]	[36]	[37]	[38]	[39]	This Work
Tech.	0.5 μm	0.35 µm	0.25 μm	40 nm	55 nm	65 nm	0.35 µm	0.5 μm	0.6 µm
Area	2.4 mm ²	3.84 mm ²	5.29 mm ²	4.00 mm ²	0.98 mm ²	1.86 mm ²	5.04 mm ²	4.40 mm ²	2.80 mm ²
V _{IN}	1.3–2.85 V	2.7–3.3 V	2.7–5 V	2.7-3.6 V	2.7–3.6 V	3.4-4.3 V	2.0-3.0 V	1.2–2.2 V	2.6 ³ -4.2 V
vo	3, 3.6 V	1.2, 1.8 V	1.2, 1.8 V	1.1–2.25 V	1.8, 1.2 V	1.2–2.8 V	2.5–5 V	3.0, 2.5 V	1.5, 2.5 V
i _{O(MAX)}	170^2 mA	200 mA	600 mA	900 mA	600 mA	1150 mA	400 mA	100 mA	120 mA
Lo	1 μH 125 mΩ	1 μΗ	4.7 μΗ	4.7 μΗ	4.7 μH 200 mΩ	2.2 μΗ	10 μH 40 mΩ	1 μH 100 mΩ	12 μH 400 mΩ
Co	33-40 μF 85-80 mΩ	22 µF	47 μF	4.7 μF	4.7 μF 30 mΩ	4.7 μF	22 μF 300 mΩ	10 μF 50 mΩ	470–560 nF 10 mΩ
Extra Dev.			3 µF						
f _{sw}	1 MHz	1 MHz	1.3 MHz	1 MHz	1 MHz	1.2 MHz	0.8 MHz	0.5 MHz	200-850 kHz
$\Delta i_{O(LD)}$	±50 mA	±90 mA	±547 mA	±200 mA	±180 mA	±150 mA	±40 mA	±50 mA	±65 mA
t _R	$20^2 \mu s$	$2^1 \mu s$	15 ² μs	$40^2 \mu s$	8 ² μs	$12^2 \mu s$	200 ² μs	5 ² μs	3.8 µs
$\Delta v_{O(MAX)}$	40^2 mV	33 mV	$60^2 \mathrm{mV}$	60 mV	100 mV	50^2 mV	200 mV	$30^1 \mathrm{mV}$	±177 mV
η _{С(РК)}	88%	83%	87%	89%	91%	83%	92%	81%	88%
η _{C(FL)}	72% ²	72% ²	80% ²	86% ²	83% ²	83% ²	74% ²	80% ²	85%
RFoM	22%	108%	13%	3.4%	63%	46%	1.9%	29%	100%

TABLE I. COMPARISON OF THE STATE OF THE ART

¹Uses linear regulator; ²estimated values; and ³when $v_{01} = 1$ V and $v_{02} = 1.8$ V.

practice, the application dictates how much $\Delta i_{O(LD)}$ the load requires and how much $\Delta v_{O(MAX)}$ the load can sustain, and with these, t_R sets C_O , or in some cases, C_O sets t_R . In other words, $\Delta i_{O(LD)}$ and $\Delta v_{O(MAX)}$ are independent application parameters and t_R and C_O are codependent design variables that are normally independent of $\Delta i_{O(LD)}$ and $\Delta v_{O(MAX)}$. So t_R alone is a good way of assessing and comparing designs.

The system here responds quickly at 0.9–3.8 μ s because the oscillator's response time is practically the time L₀'s i_L requires to slew to its target. This is as fast as a switched inductor possibly can. [16] in Table I is slightly faster at 2 μ s because a linear regulator is the one that responds to load dumps. This linear regulator, however, requires additional silicon area and power, so die size is 37% larger with 42% shorter channel lengths and peak and full-load efficiencies are 5% and 13% lower.

[39] is a close second at 5 μ s, but die area is 57% larger and efficiencies are 7% and 5% lower. [36] is third at 8 μ s, but with 91% shorter channel lengths L_{MIN}. [37] is next at 12 μ s, but with 89% shorter L_{MIN} and 5% and 2% lower efficiencies. [34] follows at 15 μ s because a capacitor between outputs couples errors, like CP_E here does, to accelerate response time. This capacitor, however, is off chip, die size is 89% larger with 58% shorter L_{MIN}, and efficiencies are 1% and 5% lower.

<u>Relative Figure of Merit</u>: Maximum current $i_{O(MAX)}$, peak and full-load efficiencies $\eta_{C(PK)}$ and $\eta_{C(FL)}$, maximum response time $t_{R(MAX)}$, and cost of silicon area A_{SI} , additional off-chip components ΔN_{OC} , and process technology define the merits of a power supply. Although not always weighed evenly, a relative figure of merit (RFoM) should climb with $i_{O(MAX)}$, $\eta_{C(PK)}$, $\eta_{C(FL)}$, and minimum channel length L_{MIN} (for lower cost) and fall with $t_{R(MAX)}$, A_{SI} , and ΔN_{OC} :

$$RFoM = \frac{i_{O(MAX)}\eta_{C(PK)}\eta_{C(FL)}L_{MIN}}{t_{R(MAX)}A_{SI}(1+\Delta N_{OC})PoR},$$
(7)

where PoR is a normalizing point of reference. So when normalizing to this system, whose $i_{O(MAX)}$ is 120 mA, $\eta_{C(PK)}$ is 88%, $\eta_{C(FL)}$ is 85%, L_{MIN} is 0.6 µm, $t_{R(MAX)}$ is 3.8 µs, A_{SI} is 2.8 mm², and ΔN_{OC} is 0, PoR is 5.0616E3 and RFoM is 1.

Using this metric, [16]'s rating is slightly higher by 8% because 67% higher $i_{O(MAX)}$ and 47% lower $t_{R(MAX)}$ edge other deficiencies. (Note that [16]'s $t_{R(MAX)}$ is an unmeasured estimate.) [36]'s and [37]'s ratings are 37% and 54% lower than the system presented here primarily because L_{MIN} 's are 91% and 89% lower. [39]'s, [33]'s, and [34]'s ratings are 71%, 78%, and 87% lower because the balance between response times and efficiencies is less favorable. [35]'s rating is 96% lower because L_{MIN} is 83% shorter and $t_{R(MAX)}$ is 10.5× higher and [38]'s ratings is 98% lower mostly because $t_{R(MAX)}$ is 53× higher. In other words, this work and [16] rate similarly high, except this work is more efficient and [16] is slightly faster.

V. CONCLUSIONS

The 0.6- μ m CMOS switched-inductor dual-supply system presented here responds to rising and falling 45–65-mA load dumps within 3.8 μ s to keep its outputs within \pm 78 mV and +160 and -177 mV of their 1.5- and 2.5-V targets with 88% and 85% peak and full-load efficiencies. Response time is essentially the time the inductor current requires to slew to its target, which is as fast as any switched inductor possibly can. The system is so quick and stable because the hysteretic oscillator that ripples the inductor current about the loopdefined average responds within the propagation delay of a comparator: within one cycle. Response time is critical because faster supplies require less capacitance to supply load dumps and maintain accuracy. In literature, only [16] is slightly faster at 2 µs because a linear regulator bypasses the inductor to supply load dumps. [16]'s tradeoffs are 37% larger die, 42% shorter channel lengths, and 5% and 13% lower peak and full-load efficiencies. Sacrificing conversion efficiency, die area, and process technology for the sake of speed, however, shortens battery life and raises cost, which limits market penetration, profits, and overall impact.

ACKNOWLEDGEMENT

The authors thank J.D. Morris, B. Legates, T. Bonte, and Linear Technology for their sponsorship and support.

REFERENCES

- D. Puccinelli and M. Haenggi, "Wireless sensor networks: applications and challenges of ubiquitous sensing," *IEEE Circuits and Systems Magazine*, vol. 5, no. 3, pp. 19–31, 2005.
- [2] N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A.P. Chandrakasan, "A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System," *IEEE Jour. Solid-State Circuits*, vol. 45, no. 4, pp. 804–816, Apr. 2010.
- [3] B. Bae, Y. Shim, K. Koo, J. Cho, J.S. Pak, and J. Kim, "Modeling and Measurement of Power Supply Noise Effects on an Analog-to-Digital Converter Based on a Chip-PCB Hierarchical Power Distribution Network Analysis," *IEEE Trans. Electromagnetic Compatibility*, vol. 55, no. 6, pp. 1260–1270, Dec. 2013.
- [4] E. Sanchez-Sinencio and A.G. Andreou, Low-Voltage/Low-power Integrated Circuits and Systems, IEEE Press, New York, 1998.
- [5] M.K. Stojcev, M.R. Kosanovic, and L.R. Golubovic, "Power management and energy harvesting techniques for wireless sensor nodes," *Int. Conf. Telecomm. in Modern Satellite, Cable, and Broadcasting Services*, pp.65–72, Oct. 2009.
- [6] S. Hua and G. Qu, "Voltage setup problem for embedded systems with multiple voltages," *IEEE Trans. Very Large Scale Integration Systems*, vol. 13, no. 7, pp. 869–872, Jul. 2005.
- [7] L. Yung-Hsiang and G. De Micheli, "Comparing system level power management policies," *IEEE Design & Test of Computers*, vol. 18, no. 2, pp. 10–19, Mar./Apr. 2001.
- [8] J. Park, D. Shin, N. Chang, and M. Pedram, "Accurate modeling and calculation of delay and energy overheads of dynamic voltage scaling in modern high-performance microprocessors," *ACM/IEEE Int. Sym. Low-Power Electronics and Design*, pp. 419–424, Aug. 2010.
- [9] G.A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators, McGraw-Hill, New York, 2009.
- [10] M. Ordonez, J.E. Quaicoe, and M.T. Iqbal, "Critical Parameters in the Transient Response of Synchronous Buck Converters," *IEEE Power Electronics Specialists Conference*, pp. 2189–2195, Jun. 2007.
- [11] C.O. Mathúna, N. Wang, S. Kulkarni, and S. Roy, "Review of Integrated Magnetics for Power Supply on Chip (PwrSoC)," *IEEE Trans. Power Electronics*, vol. 27, no. 11, pp. 4799–4816, Nov. 2012.
- [12] D. Kwon and G.A. Rincon-Mora, "Single-Inductor–Multiple-Output Switching DC–DC Converters," *IEEE Trans. Circuits and Systems II: Express Briefs*, vol. 56, no. 8, pp. 614–618, Aug. 2009.
- [13] S. Chattopadhyay and S. Das, "A Digital Current-Mode Control Technique for DC–DC Converters," *IEEE Trans. Power Electronics*, vol. 21, no. 6, pp. 1718–1726, Nov. 2006.
- [14] X. Duan and A.Q. Huang, "Current-mode variable-frequency control architecture for high-current low-voltage DC-DC converters," *IEEE Trans. Power Electronics*, vol. 21, no. 4, pp. 1133–1137, Jul. 2006.
- [15] E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti, and B. Niessen, "A 200mA 93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter," *IEEE Int. Solid-State Circuits Conf.*, pp. 526–619, Feb. 2007.

- [16] Y. Zhang and D. Ma, "A Fast-Response Hybrid SIMO Power Converter with Adaptive Current Compensation and Minimized Cross-Regulation," *IEEE Jour. Solid-State Circuits*, vol. 49, no. 5, pp. 1242–1255, May 2014.
- [17] M.Y. Jung, S.H. Park, J.S. Bang, D.C. Park, S.U. Shin, and G.H. Cho, "12.5 An error-based controlled single-inductor 10-output DC-DC buck converter with high efficiency at light load using adaptive pulse modulation," *IEEE Int. Solid-State Circuits Conf.*, pp. 1–3, Feb. 2015.
- [18] D. Ma, W.H. Ki, and C.Y. Tsui, "A pseudo-CCM/DCM SIMO switching converter with freewheel switching," *IEEE Jour. Solid-State Circuits*, vol. 38, no. 6, pp. 1007–1014, Jun. 2003.
- [19] D. Ma and R. Bondade, "Enabling Power-Efficient DVFS Operations on Silicon," *IEEE Circuits and Systems Magazine*, vol. 10, no. 1, pp. 14–30, First Quarter 2010.
- [20] M.H. Huang, Y.N. Tsai, and K.H. Chen, "Sub-1 V Input Single-Inductor Dual-Output (SIDO) DC–DC Converter With Adaptive Load-Tracking Control (ALTC) for Single-Cell-Powered Systems," *IEEE Trans. Power Electronics*, vol. 25, no. 7, pp. 1713–1724, Jul. 2010.
- [21] H.P. Le, C.S. Chae, K.C. Lee, S.W. Wang, G.H. Cho, and G.H. Cho, "A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control," *IEEE Jour. Solid-State Circuits*, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
- [22] M.H. Huang and K.H. Chen, "Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices," *IEEE Jour. Solid-State Circuits*, vol. 44, no. 4, pp. 1099–1111, Apr. 2009.
- [23] K.S. Seol, Y.J. Woo, G.H. Cho, G.H. Gho, and J.W. Lee, "A Synchronous Multioutput Step-Up/Down DC–DC Converter With Return Current Control," *IEEE Trans. Circuits and Systems II: Express Briefs*, vol. 56, no. 3, pp. 210–214, Mar. 2009.
- [24] K.C. Lee, C.S. Chae, G.H. Cho, and G.H. Cho, "A PLL-based highstability single-inductor 6-channel output DC-DC buck converter," *IEEE Int. Solid-State Circuits Conf.*, pp. 200–201, Feb. 2010.
- [25] S.W. Wang, G.H. Cho, and G.H. Cho, "A high-stability emulated absolute current hysteretic control single-inductor 5-output switching DC-DC converter with energy sharing and balancing," *IEEE Int. Solid-State Circuits Conf.*, pp. 276–278, Feb. 2012.
- [26] C.J. Solis and G.A. Rincon-Mora, "Nested hysteretic current-mode single-inductor multiple-output (SIMO) boosting buck converter," *IEEE Int. Conf. New Circuits and Systems*, pp. 1–4, Jun. 2013.
- [27] N. Keskar and G.A. Rincon-Mora, "Designing an Accurate and Robust LC-Compliant Asynchronous ΣΔ Boost DC-DC Converter," *IEEE Int. Symp. Circuits and Systems*, pp. 549–552, May 2007.
- [28] G.A. Rincon-Mora, Power IC Design, Lulu, Raleigh, 2009.
- [29] R. Redl, B.P. Erisman, and Z. Zansky, "Optimizing the load transient response of the buck converter," *Applied Power Electronics Conference* and Exposition, pp. 170–176, Feb. 1998.
- [30] C.J. Solis and G.A. Rincon-Mora, "Stability analysis & design of hysteretic current-mode switched-inductor buck DC-DC converters," *IEEE Int. Conf. in Electronics, Circuits, and Systems*, pp. 811–814, Dec. 2013.
- [31] H.P. Forghani-Zadeh and G.A. Rincon-Mora, "An Accurate, Continuous, and Lossless Self-Learning CMOS Current-Sensing Scheme for Inductor-Based DC-DC Converters," *IEEE Jour. Solid-State Circuits*, vol. 42, no. 3, pp. 665–679, Mar. 2007.
- [32] S. Kim and G.A. Rincon-Mora, "Achieving high efficiency under microwatt loads with switching buck dc-dc converters," *Jour. Low Power Electronics*, vol. 4, no. 2, pp. 229–240, Aug. 2009.
- [33] D. Ma, W.H. Ki, C.Y. Tsui, and P.K.T. Mok, "Single-inductor multipleoutput switching converters with time-multiplexing control in discontinuous conduction mode," *IEEE Jour. Solid-State Circuits*, vol. 38, no. 1, pp. 89–100, Jan. 2003.
- [34] W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, "A Dual-Mode Single-Inductor Dual-Output Switching Converter With Small Ripple," *IEEE Trans. Power Electronics*, vol. 25, no. 3, pp. 614–623, Mar. 2010.
- [35] W.C. Chen, Y.P. Su, T.C. Huang, T.W. Tsai, R.H. Peng, K.L. Lin, K.H. Chen, Y.H. Lin, C.C. Lee, S.R. Lin, and T.Y. Tsai, "Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology," *IEEE Jour. Solid-State Circuits*, vol. 50, no. 7, pp. 1525– 1539, Jul. 2015.
- [36] Y.H. Lee, T.C. Huang, Y.Y. Yang, W.S. Chou, K.H. Chen, C.C. Huang, and Y.H. Lin, "Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-

DC Converter," IEEE Jour. Solid-State Circuits, vol. 46, no. 11, pp. 2488–2499, Nov. 2011.

- [37] C.W. Kuan and H.C. Lin, "Near-independently regulated 5-output singleinductor DC-DC buck converter delivering 1.2W/mm² in 65nm CMOS," *IEEE Int. Solid-State Circuits Conf.*, pp. 274–276, Feb. 2012.
- [38] J. Kim, D.S. Kim, and C. Kim, "A Single-Inductor Eight-Channel Output DC–DC Converter With Time-Limited Power Distribution Control and Single Shared Hysteresis Comparator," *IEEE Trans. Circuits and Systems I: Regular Papers*, vol. 60, no. 12, pp. 3354–3367, Dec. 2013.
- [39] Y.J. Moon, Y.S. Roh, J.C. Gong, and C. Yoo, "Load-Independent Current Control Technique of a Single-Inductor Multiple-Output Switching DC– DC converter," *IEEE Transactions Circuits and Systems II: Express Briefs*, vol. 59, no. 1, pp. 50–54, Jan. 2012.

Carlos J. Solis (GSM'10) received his B.S. ans M.S. from the University of Puerto Rico at Mayaguez in 2010 and the Georgia Tech in 2012, respectively. He is currently pursuing his Ph.D. at the Georgia Tech Analog, Power, and Energy (GTAPE) research. His research interests include switching

power supplies, and analog IC design.

Gabriel A. Rincón-Mora (StM'90, GSM'93, M'97, SM'01, F'11) worked for Texas Instruments in 1994-2003, was an Adjunct Professor at Georgia Tech in 1999-2001, and has been a Professor at Georgia Tech since 2001 and a Visiting Professor at National Cheng Kung University in Taiwan

since 2011. He is also a Fellow of the IET and his scholarly products include 9 books, 4 book chapters, 38 patents issued, over 170 publications, over 26 commercial power-chip designs, and over 110 invited talks. He is also a Fellow of IET.