Inductively Coupled 180-nm CMOS Charger with Adjustable Energy-Investment Capability

Orlando Lazaro, Graduate Student Member, IEEE, Gabriel A. Rincón-Mora, Fellow, IEEE

Abstract—Although add wireless microsensors can performance-enhancing and energy-saving intelligence to factories, hospitals, and others, their tiny on-board sources exhaust quickly. Luckily, coupling power inductively can both energize system components and recharge a battery. Miniaturized receiver coils, however, capture a small fraction of the magnetic energy available, so coupling factors (k_c) and, as a result, power-conversion efficiencies are low. In other words, damping the magnetic source so it outputs maximum power is difficult. Investing energy into the coil increases its ability to draw power, but only when optimized. Since state-of-the-art systems can only recycle harvested energy, they are optimal only at one k_C value. The inductively coupled 180-nm CMOS charger prototyped, measured, and presented here invests programmable amounts of battery energy into the pickup coil to generate 8 - 390 μ W when k_C is 0.009 – 0.076 and raise output power by 132% and 24% at k_C's of 0.020 and 0.076, respectively.

Index Terms—Inductively coupled power, contactless battery charger, wireless power, energy investment, electrical damping.

I. INDUCTIVELY POWERED MICROSYSTEMS

Emerging wireless microsystems include sensors, processors, memory, transmitters, and other components that sensor networks [1] and biomedical implants [2] use to improve performance and save energy. Collecting, processing, storing, and transmitting data over time, however, typically requires more power and energy [3] than tiny lithium-ion batteries and super capacitors can supply [4]. As a result, the functionality of a node is normally low and lifetime is short.

Coupling power inductively into the system, as Fig. 1 shows, can both increase functionality and extend operational life. In fact, by energizing functional blocks directly (via a power conditioner) [5] and recharging an onboard battery C_{BAT} [6], the system can save battery energy and operate later, on demand between recharge cycles. The problem is only a small fraction of the magnetic flux that the transmitting source generates penetrates the system's tiny pickup coil L_s , which means that, for a given coil separation d_c , coupling factor k_c and induced electromotive-force voltage $v_{EMF,s}$ are low [7].

Fortunately, raising the coil's current, as Section II describes, further dampens the transmitting source, so L_s draws more power. Resonant-based bridges [8] invest energy for this purpose, except conversion efficiency is sensitive to frequency and investment levels cannot adjust to account for

investment losses or over-damping limits. Sections III, IV, and V therefore present, validate, and evaluate an inductively coupled CMOS charger that both, is less sensitive to frequency and invests an adjustable amount of energy. The novelty and focus here is how to invest optimal amounts of battery energy to boost output power for any coupling factor k_C because state-of-the-art resonant systems can only re-cycle harvested energy to draw maximum power at a particular k_C .

Fig. 1. Inductively (i.e., wirelessly) powered microsystem.

II. INVESTING ENERGY IN THE PICKUP COIL

<u>Sourced EMF Voltage</u>: Transmitting ac voltage v_P in Fig. 1 is the ultimate source of power for the system. For that, v_P drives the tuned resonant tank that C_P and L_P implement at operational frequency f_O . Some of the magnetic flux that L_P 's current i_P generates penetrates L_S to induce an electromotiveforce voltage $v_{EMF,S}$ that increases with coupling factor k_C , L_P , L_S , and changes in v_P , or by translation, di_P/dt :

$$\mathbf{v}_{\text{EMF.S}} = \mathbf{k}_{\text{C}} \sqrt{\mathbf{L}_{\text{P}} \mathbf{L}_{\text{S}}} \left(\frac{\mathrm{d}\mathbf{i}_{\text{P}}}{\mathrm{d}\mathbf{t}} \right). \tag{1}$$

Unfortunately, because coil distance d_C reduces the intensity of the magnetic field at L_S and a small pickup coil captures only a fraction of the magnetic flux present, k_C is considerably low, so $v_{EMF,S}$ in microsystems is typically in millivolts.

<u>Power Generated</u>: A positive voltage, like a battery, sources power when current flows out: when current is also positive. Similarly, $v_{EMF,S}$ sources power $P_{EMF,S}$ when $v_{EMF,S}$ and its current i_L are both positive or both negative. This is why i_L 's second harmonic $i_{L(2)}$ in Fig. 2a and currents out of phase by 90° i_L^- in Fig. 2b source power between 0 and $0.25T_{\circ}$. Conversely, $v_{EMF,S}$ consumes power when $v_{EMF,S}$'s and i_L 's polarities oppose, so $i_{L(2)}$ and i_L^- between $0.25T_{\circ}$ and $0.5T_{\circ}$

Manuscript received October 19, 2012. Texas Instruments funded this research.

The authors are with the Georgia Tech Analog, Power, and Energy IC Research Laboratory in the School of Electrical and Computer Engineering at the Georgia Institute of Technology, Atlanta, GA 30332-0250 U.S.A. (E-mail: Orlando.Lazaro@ece.gatech.edu; Rincon-Mora@gatech.edu).

lose energy. As a result, given the symmetry of the signals, i_L^- and $i_{L(2)}$, like all other even harmonics, generate as much power as they dissipate across every half cycle. In other words, 90° out-of-phase currents and even-order harmonics of i_L do not produce power.

Although third-order harmonic $i_{L(3)}$ in Fig. 2a generates more power than it dissipates across the first half of period T_0 , it consumes more than it produces across the latter half to *just* cancel earlier gains. As a result, third- and other odd-order harmonics do not produce power. In fact, only in-phase components of i_L draw power from $v_{EMF,S}$ [9]:

$$P_{EMF.S} = \frac{1}{T_0} \int_{0}^{T_0} v_{EMF.S} \dot{i_L}^* dt .$$
 (2)

However, since $v_{EMF,S}$ is in mV's and mV's across L_S induce low i_L^+ currents, $P_{EMF,S}$ in unassisted microsystems is low.

<u>Value of Investment</u>: One way of increasing $P_{EMF,S}$ is by enlisting external assistance to raise in-phase current i_L^+ . That is to say, investing energy in the pickup coil increases $P_{EMF,S}$, but only if the system recovers the investment, transfer losses do not negate the gains, and the system does not over-damp the transmitter. The idea is the 2.7 – 4.2 V that a lithium-ion battery outputs, for example, can quickly raise i_L^+ to a substantially higher level I_{INV} than $v_{EMF,S}$ can with I_{EMF} . As a result, the quadratic rise in L_S 's energy E_{LS} outpaces the initial investment of $0.5L_S I_{INV}^2$ to generate a gain that is greater than what $v_{EMF,S}$'s I_{EMF} alone can produce with $0.5L_S I_{EMF}^2$ [8]:

$$E_{LS} = 0.5 L_{S} i_{L(PK)}^{2} = 0.5 L_{S} (I_{INV} + I_{EMF})^{2}$$
$$= 0.5 L_{S} I_{INV}^{2} + 0.5 L_{S} I_{EMF}^{2} + L_{S} I_{INV} I_{EMF} .$$
(3)

Since k_C is low in microsystems, extracting power hardly damps the transmitting source, so higher investments draw more power from v_P . This trend only continues, however, if the power losses that result from investing $0.5L_SI_{INV}^2$ do not exceed the incremental gain of $L_SI_{INV}I_{EMF}$. This presents a limit because Ohmic i_{RMS}^2R losses in L_S 's conduction path rise quadratically with increasing investment currents, so quadratic losses outpace linear gains in $L_SI_{INV}I_{EMF}$ to a point where raising the investment does not help.

When the pickup coil is sufficiently larger and/or closer to the transmitting source, the coupling factor can be so high that investing more energy over-damps v_P [10–12] before investment losses negate incremental gains. In other words, over-damping, which reduces i_P and therefore $v_{EMF.S}$, poses another investment limit. The two limits imply that an optimal investment current I_{INV}^* delivers maximum power. For this, the system must adjust and both supply and sink investment current because in-phase current changes polarity with $v_{EMF.S}$. Notice the investment helps draw more energy from $v_{EMF.S}$ as described only when i_L remains in phase with $v_{EMF.S}$.

III. INVESTMENT-ASSISTED INDUCTIVELY COUPLED CHARGER

<u>Operation</u>: The circuit in Fig. 3 draws battery power from C_{BAT} to invest energy in pickup coil L_S . For this, S_D^- and S_N^+ first connect to energize L_S with $v_{EMF,S}$ when $v_{EMF,S}$ is positive and V_{BAT} through positive investment time τ_{INV}^+ . With V_{BAT} 's higher voltage across L_S , L_S 's i_L rises quickly to I_{INV}^+ , as Fig. 4

shows. Through this time, $v_{EMF,S}$ and V_{BAT} deposit energy into L_S . Past τ_{INV}^+ , S_D^- opens and S_N^- closes to continue energizing L_S from $v_{EMF,S}$ through the remainder of $v_{EMF,S}$'s positive half cycle, as the measured waveforms of Fig. 4 show across τ_E^+ .

Fig. 3. Investment-assisted inductively coupled charger.

Fig. 4. Extrapolated $v_{EMF.S}$ from measured coil voltage v_{PC} and current i_L .

At the end of $v_{EMF,S}$'s positive half cycle: at the end of τ_E^+ , S_N^+ opens and S_D^+ closes to deplete L_S into C_{BAT} and, after that, draw investment current from C_{BAT} . S_D^+ basically reverses V_{BAT} 's polarity across L_S to decrease i_L quickly across de-energizing and negative investment times τ_{DE}^+ and τ_{INV}^- to zero and past zero to $-I_{INV}^-$. S_D^+ then opens and S_N^+ closes to further energize L_S from $v_{EMF,S}$ across $v_{EMF,S}$'s negative half cycle until i_L peaks in the negative direction at the end of τ_E^- . As at the end of τ_E^+ , S_N^- opens and S_D^- closes at the end of τ_E^- to drain L_S into C_{BAT} and invest C_{BAT} charge into L_S across deenergizing and positive investment times τ_{DE}^- and τ_{INV}^+ . Table I summarizes the states of the switches, their duration, and the coil voltages they establish across T_O .

TABLE I: STATE DIAGRAM

State of v _{EMF.S}	Duration	VPC	S_N^+	S_{D}^{+}	S_N	S _D
-/+ Transition	$\tau_{BAT}^{-} = \tau_{DE}^{-} + \tau_{INV}^{+}$	$-V_{BAT}$	On	Off	Off	On
+	$ au_{ m E}^+$	0	On	Off	On	Off
+/- Transition	$\tau_{BAT}^{+} = \tau_{DE}^{+} + \tau_{INV}^{-}$	$+V_{BAT}$	Off	On	On	Off
-	$ au_{ m E}^-$	0	On	Off	On	Off

<u>Output Power</u>: C_{BAT} receives energy from L_S across $v_{EMF.S}$'s positive and negative cycles' de-energizing times τ_{DE}^+ and τ_{DE}^- and invests charge across positive and negative investment times τ_{INV}^+ and τ_{INV}^- . As a result, assuming L_S transfers energy losslessly and I_{INV}^+ mirrors I_{INV}^- , C_{BAT} 's net energy gain per cycle is

$$E_{BAT} \approx 2 \left(0.5 L_{s} \dot{I}_{L(PK)}^{2} \right) - 2 \left(0.5 L_{s} I_{INV}^{2} \right) = L_{s} \left(I_{EMF}^{2} + 2 I_{EMF} I_{INV} \right), \quad (4)$$

where i_L 's peak $i_{L(PK)}$ is I_{INV} plus $v_{EMF,S}$'s contribution I_{EMF} across each half cycle, which is

$$I_{EMF} = \int_{0}^{\tau_{E}} \frac{V_{EMF,S(PK)} \sin(2\pi f_{O}t)}{L_{S}} dt .$$
 (5)

In other words, $v_{EMF.S}$ sources

$$P_{EMF,S} \approx \frac{L_{S} \left(I_{EMF}^{2} + 2I_{EMF} I_{INV} \right)}{T_{O}} = L_{S} \left(I_{EMF}^{2} + 2I_{EMF} I_{INV} \right) f_{O}.$$
 (6)

 L_S 's series resistance R_S and S_N^+ , S_N^- , S_D^+ , S_D^- , and the controller circuit (which Fig. 3 does not show), however, consume energy, so the battery receives less power:

$$P_{BAT} = P_{EMF.S} - P_{LOSS} .$$
 (7)

Note the analysis assumes i_L and $v_{EMF,S}$ are in phase, so the controller should start draining L_S just before $v_{EMF,S}$ reaches zero in Fig. 4 to ensure i_L and $v_{EMF,S}$ have the same polarity. Otherwise, with opposite polarities, $v_{EMF,S}$ extracts energy from L_S , which is effectively an additional loss in P_{LOSS} .

IV. PROTOTYPED INDUCTIVELY COUPLED SYSTEM

Fig. 5 illustrates the investment-assisted inductively coupled charger fabricated, prototyped, and measured. The 350 × 700- μ m² 180-nm CMOS IC houses the power receiver, except for the 400- μ H 3.5 × 2.6 × 11.7-mm³ pickup coil, the 100-nF 0.5 × 1.0 × 0.4-mm³ battery capacitor C_{BAT}, synchronizer, and a bias resistor, the latter of two of which are off chip for testing purposes. Here, CMOS transistors M_N^+ , M_N^- , M_P^+ , and M_P^- implement switches S_N^+ , S_N^- , S_D^+ , and S_D^- from Fig. 3. So, while keeping transmission strength constant, variations in coil distance d_C changed coupling factor k_C to test the impact of investments on P_{EMF.S} across v_{EMF.S} levels. The system outputs power when the coils are up to 11.35 mm apart.

<u>Control</u>: The synchronizer prompts the system to draw energy from L_S when v_{EMF.S} transitions between half cycles, as Fig. 4 shows. So, when S_{SYN} trips low, at the end of τ_E^+ , M_N^+ opens and L_S's current i_L raises v_{SW}⁺ to the point comparator CP_D⁺ closes M_P⁺. After L_S depletes into C_{BAT}, CP_D⁺'s intentional input-referred offset V_{OS}⁺ keeps M_P⁺ closed to let C_{BAT} energize L_S in the negative direction. This continues until i_L, which now flows out of C_{BAT}, impresses a voltage across M_P⁺ that is large enough to overcome V_{OS}⁺. At this point, which marks the end of τ_{INV}^- , CP_D⁺ shuts M_P⁺ and closes M_N⁺ to allow v_{EMF.S} energize L_S across the negative half cycle.

 S_{SYN} similarly opens M_N^- when S_{SYN} trips high at the end of τ_E^- to steer i_L into v_{SW}^- , which raises v_{SW}^- until $CP_D^$ engages M_P^- and drains L_S into C_{BAT} . CP_D^- keeps M_P^- closed until after i_L reverses and establishes a voltage across M_P^- that is sufficiently high to overcome CP_D's offset V_{OS}, at the end of τ_{INV}^+ . $v_{EMF,S}$ continues to energize L_S after that across τ_E^+ until S_{SYN} restarts another cycle.

The difference between this system and [13] is this one invests battery energy into L_S , which [13] cannot do. Here, after harvesting charge into C_{BAT} , S_D^+ and S_D^- draw energy from C_{BAT} to invest into L_S . Since C_{BAT} 's current i_{BAT} across M_P^+ and M_P^- trip CP_D^+ and CP_D^- at the end of τ_{INV}^- and τ_{INV}^+ , V_{OS}^+ and V_{OS}^- together with M_P^+ and M_P^- 's triode resistances (i.e., R_P) limit C_{BAT} 's half-cycle investment in L_S to

$$I_{\rm INV} = \frac{V_{\rm OS}}{R_{\rm P}} \,. \tag{8}$$

<u>Power Losses</u>: As already mentioned, resistances, switches, and the controller consume energy that would otherwise reach C_{BAT} . i_L , for example, dissipates Ohmic power P_C in L_S 's R_S and M_N^+ and M_N^- across L_S 's energizing times τ_E^+ and τ_E^- . Similarly, R_S and M_N^- and M_P^+ (and M_N^+ and M_P^-) consume power across L_S 's de-energizing and investment times τ_{DE}^+ and τ_{INV}^- (and τ_{DE}^- and τ_{INV}^+). As a result, P_C combines to

$$P_{\rm C} = (2R_{\rm N} + R_{\rm S})i_{\rm L.E(RMS)}^{2} + (R_{\rm N} + R_{\rm P} + R_{\rm S})i_{\rm L.BAT(RMS)}^{2}, \qquad (9)$$

where R_N and R_P are n- and p-type MOS triode resistances. The battery also loses energy E_G each time the drivers

charge MOS gate capacitors to V_{BAT} . As a result, combined gate capacitance C_G draws gate-drive power P_G from C_{BAT} :

$$P_{\rm G} = \frac{E_{\rm G}}{T_{\rm O}} = (Q_{\rm C} V_{\rm BAT}) f_{\rm O} = C_{\rm G} V_{\rm BAT}^{2} f_{\rm O} .$$
(10)

 CP_D^+ and CP_D^- also draw quiescent battery power P_Q , except the logic in Fig. 5 enables them at the end of τ_E^+ and τ_E^- and disables them at the end of τ_{INV}^- , so they lose

$$P_{Q} = 2P_{CP} = 2(I_{CP}V_{BAT})\left(\frac{\tau_{DE} + \tau_{INV}}{T_{O}}\right).$$
 (11)

Investment Limits: Of the three loss components in PLOSS:

$$P_{\text{LOSS}} = P_{\text{C}} + P_{\text{G}} + P_{\text{Q}} , \qquad (12)$$

conduction losses P_C and quiescent losses P_Q increase with investment level I_{INV} . For example, because L_S requires more time to drain and energize to a higher current, raising I_{INV} extends de-energizing and investment times τ_{DE} and τ_{INV} . A higher I_{INV} also means $i_{L(RMS)}$ is higher, which means P_C rises quadratically with I_{INV} . This is significant because, since sourced power $P_{EMF.S}$ rises linearly with i_L , elevating I_{INV} via V_{OS} raises P_{BAT} , but only until losses negate incremental gains, which means P_{BAT} is highest at an optimal investment level.

Before reaching this limit, however, raising $P_{EMF.S}$ can also

Fig. 5. Prototyped inductively coupled 180-nm CMOS charger with adjustable energy investment (transistor dimensions are in µm).

over-damp the transmitting source. This results because drawing power from $v_{EMF,S}$ is equivalent to loading $v_{EMF,S}$, whose effect on the transmitter is to load it. In Fig. 6, for example, since L_S 's i_L integrates $v_{EMF,S}$'s sinusoid, L_S models 90^o out-of-phase components of i_L and resistor R_{EQ} models inphase components, which is why R_{EQ} is $v_{EMF,S(PK)}/i_L^+$. Such a load reflects back on the transmitter as the series combination of inductor $L_{S,P}$ and resistor $R_{EQ,P}$. As a result, v_P sources maximum power when its equivalent load of $L_{S,P}$ and $R_{EQ,P}$ matches v_P 's source impedance of R_P , L_P , and C_P . In other words, $P_{EMF,S}$ is highest at an optimal investment level.

Fig. 6. Power receiver's load model and its reflection on the transmitter.

Another possibility is that the system maxes i_L before losses overwhelm incremental gains and $P_{EMF.S}$ over-damps v_P . Reaching this $i_{L(MAX)}$ limit happens when τ_{DE} and τ_{INV} extend through $v_{EMF.S}$'s entire half cycle of 0.5T_O, as Fig. 7 shows:

$$i_{L(MAX)} = \int_{0}^{\tau_{DE}+\tau_{INV}} \left(\frac{V_{BAT} + v_{EMF,S}}{L_{S}} \right) dt = \int_{0.25T_{O}}^{0.75T_{O}} \left(\frac{V_{BAT} + v_{EMF,S}}{L_{S}} \right) dt .$$
(13)

In other words, the system has no more than half a cycle to drain and energize L_S to and from $i_{L(MAX)}^+$ and $i_{L(MAX)}^-$. Here, a strong transmitting source v_P and/or a high coupling factor k_C , both of which raise $v_{EMF.S}$, and/or a large V_{BAT} can max i_L .

<u>Synchronizer</u>: As mentioned in Section II, matching i_L's polarity to that of $v_{EMF,S}$ keeps $v_{EMF,S}$ from consuming power. For this, the synchronizer prompts the system to drain L_S just before $v_{EMF,S}$ transitions between half cycles and invest battery energy into L_S after the transition. Since transmitter current i_P dictates how $v_{EMF,S}$ behaves, timing the system to i_P is possible. Comparator CP_{SYN} in Fig. 5, for example, trips when i_P crosses zero, which is when $v_{EMF,S}$ peaks in Fig. 4, and manually tunable delay block τ_{DLY} waits until $v_{EMF,S}$ is close enough to the next half cycle to start draining L_S into C_{BAT} .

Unfortunately, sensing i_P is not always plausible. Disconnecting L_S across one or two periods to sense and program $v_{EMF.S}$'s transition points for subsequent cycles is another way to time the system. The transmitter can also send this information across L_P-L_S 's inductive link. Note $CP_{SYN} \tau_{DLY}$ in Fig. 5 is only an example used to assess the efficacy of investing battery energy, which is the focus of this work.

V. MEASURED PERFORMANCE

Output Power: Fig. 8 shows higher I_{INV} values draw more

 $P_{EMF.S}$ from $v_{EMF.S}$ for low coupling factors. The figure also demonstrates that raising $P_{EMF.S}$ hardly affects $v_{EMF.S}$, so damping effects on the transmitting source are minimal in this coupling regime. Battery power P_{BAT} , however, maxes at 82 μ W with an optimal investment of 1.9 mA, when losses P_{LOSS} offset incremental gains. Notice conduction losses P_C rise quickly with I_{INV} to dominate P_{LOSS} and limit P_{BAT} . Also note $P_{BAT(MAX)}$ is nearly half of $P_{EMF.S}$ at 1.9 mA, which means source and load impedances in the receiver nearly match to yield maximum output power [10, 12]. However, because P_{LOSS} also includes gate-drive and quiescent losses P_G and P_Q , P_{BAT} is slightly below its theoretical maximum.

With a higher coupling factor k_C , elevating I_{INV} reduces $v_{EMF.S}$ in Fig. 9, so the transmitter suffers more damping effects in this coupling regime. $P_{EMF.S}$ therefore maxes at 506 μ W with 2.5 mA. Because P_{LOSS} still consumes some of $P_{EMF.S}$, however, P_{BAT} maxes at 392 μ W with a different investment level of 1.4 mA. Note P_{BAT} is higher than in the low coupling case because $v_{EMF.S}$ generates more power with a higher k_C .

Fig. 9. Measured power and extrapolated $v_{\text{EMF.S}}$ across investment levels when coupling factor is high at 0.076.

<u>System Efficiency</u>: While wall outlets, for example, can often afford to flood transmitters with power, batteries in emerging applications cannot. In these latter cases, conserving energy across the system may be more important than supplying maximum power. Therefore, to maximize system efficiency η_{SYS} , designers must negotiate tradeoffs between transmitter and receiver efficiencies η_T and η_R , respectively:

$$\eta_{\text{SYS}} = \eta_{\text{T}} \eta_{\text{R}} = \left(\frac{P_{\text{EMFS}}}{P_{\text{P}}}\right) \left(\frac{P_{\text{BAT}}}{P_{\text{EMFS}}}\right), \quad (14)$$

where η_T is the fraction of v_P 's power that $v_{EMF.S}$ captures in $P_{EMF.S}$ and η_R is the portion of $P_{EMF.S} C_{BAT}$ receives as P_{BAT} .

In this context, because quadratic receiver losses outgrow linear increases in $P_{EMF,S}$ in response to higher investments, receiver efficiencies η_R in Figs. 10 and 11 decrease with I_{INV} . Since higher investments damp the transmitting source further, v_P 's current i_P also falls with I_{INV} . As such, because source power P_P drops linearly with i_P and conduction losses $P_{C(T)}$ in the transmitter fall quadratically with i_P , savings in $P_{C(T)}$ outpace losses in P_P with higher I_{INV} levels, so transmission efficiency η_T increases with I_{INV} . System efficiency η_{SYS} , as a result, peaks when power losses in the receiver balance savings in the transmitter at 1.9 and 2.5 mA in the low and high coupling regimes, respectively. Note η_{SYS} in Fig. 11 maxes at a higher point than P_{BAT} in Fig. 9 because, although losses in the receiver are severe enough to limit P_{BAT} at 1.4 mA, savings in the transmitter are greater up to 2.5 mA.

<u>Maximum Output Power</u>: The driving objective for this particular prototype is maximum output power P_{BAT} . Here, as Fig. 12 shows, optimal investment I_{INV} maxes and remains nearly the same at 2.2 mA for coupling factors k_C ranging from 0.035 to 0.055. This is because losses overwhelm damping effects below 0.035 and *vice versa* above 0.055. In other words, raising k_C to 0.035 means $v_{EMF,S}$ sources more power, so the system can afford to lose more power with a higher I_{INV} . Increasing k_C above 0.055, however, reduces $P_{EMF,S}$, so the system cannot afford to lose more power with a higher I_{INV} .

VI. CONCLUSIONS

Measured results show that the inductively coupled 180-nm CMOS charger prototyped here invests battery energy into its pickup coil to generate $8 - 390 \mu$ W when coupling factor is 0.009 - 0.076, raising output power by 132% at 0.020 and 24% at 0.076. Investing power, however, increases losses in the receiver and damping effects in the transmitter, which means over-investing is possible. Still, unlike in the state of

the art, the investment level is adjustable and drawn from the battery, so the system can output the highest power possible at any coupling factor. This is significant because tiny coils in microsystems capture a small fraction of the magnetic flux present and the batteries of transmitting sources have finite energy. Future wireless microsystems that track the charger's maximum power point and find the optimal investment time across coil separation and orientation and transmission strength can extend their life and functionality this way.

Fig. 12. Measured maximum output power across coupling factors.

REFERENCES

- B.W. Cook, S. Lanzisera, and K.S.J. Pister, "SoC issues for RF smart dust," *Proc. IEEE*, vol. 94, no. 6, pp. 1177–1196, Jun. 2006.
- [2] G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, and D. Sylvester, "A cubicmillimeter energy-autonomous wireless intraocular pressure monitor," in *Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2011, pp. 310–312.
- [3] G. Chen, S. Hanson, D. Blaauw, and D. Sylvester, "Circuit design advances for wireless sensing applications," *Proc. IEEE*, vol. 98, no. 11 pp. 1808-1827, Nov. 2010.
- [4] D. Linden and T.B. Reddy, "Handbook of Batteries, 4th ed. New York: McGraw-Hill, 2010.
- [5] M.W. Baker and R. Sarpeshkar, "Feedback analysis and design of RF links for low-power bionic systems," *IEEE Trans. Biomed. Circuits Syst.*, vol. 1 no. 1, pp. 28–38, Mar. 2007.
- [6] P. Li and R. Bashirullah, "A wireless power interface for rechargeable battery operated medical implants," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 54, no. 10, pp.912–916, Oct. 2007.
- [7] F.W. Grover, Inductance Calculations: Working Formulas and Tables. New York: D. Van Nostrand Co., 1946.
- [8] R.D. Prabha, D. Kwon, O. Lazaro, K.D. Peterson, and G.A. Rincón-Mora, "Increasing electrical damping in energy-harnessing transducers," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 58, no. 12, pp. 787–791, Dec. 2011.
- [9] R.W. Erickson and D. Maksimović, "Power and Harmonics in Nonsinusoidal Systems" in *Fundamentals of Power Electronics*, 2nd ed. New York: Springer, 2001, ch. 16, pp. 589–607.
- [10] B. Lenaerts and R. Puers, Omnidirectional Inductive Powering for Biomedical Implants. Dordrecht: Springer, 2009.
- [11] H.L. Li, A.P. Hu, G.A. Covic, and C.S. Tang, "Optimal coupling condition of IPT system for achieving maximum power transfer," *IET Electron. Lett.*, vol. 45, no. 1, pp. 76–77, Jan. 2009.
- [12] M. Zargham and P.G. Gulak, "Maximum achievable efficiency in nearfield coupled power-transfer systems", *IEEE Trans. Biomed. Circuits Syst.*, vol. 6, no. 3, pp. 228–245, Jun. 2012.
- [13] O. Lazaro and G.A. Rincón-Mora, "Minimizing MOSFET Power Losses in Near-field Electromagnetic Energy-harnessing ICs," in *Int. SoC Design Conf. (ISOCC)*, Jeju, Korea, Nov. 2011, pp. 377–380.