### A Non-Resonant Self-Synchronizing Inductively Coupled

### 0.18-µm CMOS Power Receiver and Charger

Orlando Lazaro, Graduate Student Member, IEEE, and Gabriel A. Rincón-Mora, Fellow, IEEE

Georgia Tech Analog, Power, and Energy IC Research, Atlanta, GA 30332-0250 U.S.A.

Phone: (404) 385 2768, E-mail: orlando.lazaro@ece.gatech.edu and rincon-mora@gatech.edu

*Abstract*: While the functionality of emerging wireless microsensors, cellular phones, and biomedical implants, to name a few, is on the rise, their dimensions continue to shrink. This is unfortunate because smaller batteries exhaust quicker. Not surprisingly, recharging batteries wirelessly is becoming increasingly popular today. Still, small pickup coils cannot harness much, so induced EMF voltages  $v_{EMF.S}$  are low. Modern receivers can resonate these low input voltages to rectifiable levels, but only with a finely tuned capacitor that resonates at megahertz when on chip and at kilohertz when off chip. In other words, resonant rectifiers are sensitive to frequency and dissipate considerable switching power when integrated on chip. Unluckily, excluding the resonant capacitor requires a control signal that synchronizes switching events to the transmitter's operating frequency. The 0.18- $\mu$ m CMOS prototype presented here derives this synchronizing signal from the coupled  $v_{EMF.S}$  by counting the number of pulses of a higher-frequency clock across a half cycle during a calibration phase and using that number to forecast half-cycle crossings. This way, the prototyped IC switches every half cycle to draw up to 557  $\mu$ W from 46.6–585-mV<sub>PK</sub> signals with 38%–84% efficiency across 1.0–5.0 cm.

*List of keywords:* Inductive power transmission, contactless charging, wireless power transfer, inductively coupled power, low-threshold rectifier, switched-inductor receiver.

### I. INDUCTIVELY POWERED MICROSYSTEMS

Modern wireless microsystems incorporate sensors, analog and digital processors, and radiofrequency transceivers to satisfy the functional demands of emerging wireless sensor networks [1] and biomedical implants [2]. Unfortunately, the power needed to sense, transmit, receive, and process signals still outpaces power reductions won by the state of the art [3], so microsensors still require more power and energy than tiny batteries can supply [4]. In other words, either the operational life of these devices is short or their functionality is low. Luckily, coupling inductive power wirelessly can supply sufficient power to operate a microsensor [5]–[9] and replenish its onboard battery [10]–[12]. This means that a microsystem, like the one in Fig. 1, can operate on its own between recharge cycles, and as a result, enjoy the benefits of extended operational life.

Volumetric constraints also limit the size of the pickup coil. This means the receiver captures a small fraction of the magnetic flux available and produces a correspondingly low electromotive-force (EMF) voltage  $v_{EMF,S}$  [13]. This low EMF voltage is the reason why state-of-the-art rectifiers use resonance to boost voltages to rectifiable levels [14]–[17]. When using a tuned capacitor for this purpose, however, the circuit is more sensitive to frequency. And when on chip, this frequency and its related switching power losses are high. The non-resonant receiver presented here excludes this capacitor and its shortcomings [18]–[19], and derives a synchronizing signal from its incoming signal to orchestrate switching events. To comprehend the benefits and limitations of this technology, Section II describes how resonant and non-resonant power receivers operate. Section III then discusses how the prototyped non-resonant system generates its synchronizing signal and Section IV quantifies how much power it transfers. Sections V and VI describe the IC implementation of the prototype and results measured. In the end, Section VII draws relevant conclusions.

#### II. THE STATE OF THE ART

### A. Resonant Receivers

Bridge-based resonant receivers use a resonating capacitor  $C_R$  like Fig. 2 shows to boost low input voltages to rectifiable levels [14]–[17]. This way, when the resonant frequency  $f_{LC}$  of  $C_R$ and the pickup coil's inductance  $L_S$  matches the frequency of the transmitted signal  $f_O$ ,  $C_R$ receives and returns energy from and to  $L_S$  in alternating quarter cycles. As a result, the magnitude of  $C_R$ 's voltage  $|v_C|$  grows across time until  $v_C$ 's positive and negative half cycles in Fig. 3 reaches two diodes above the receiving battery  $C_{BAT}$ :  $2v_D + v_{BAT}$ . Once this happens,  $C_R$ stores enough energy to raise  $v_C$  to  $2v_D + v_{BAT}$  within a half cycle, so the diodes conduct all incoming positive and negative half-cycle charge from  $L_S$  into  $C_{BAT}$ . To reduce the voltage dropped across the diodes to millivolts, state-of-the-art implementations configure synchronous MOSFET switches to operate like diodes [21]–[23].

One drawback to this approach is that output power drops drastically when  $f_0$  deviates from  $f_{LC}$  [20]. Tuning  $f_{LC}$  to  $f_0$  by adjusting  $C_R$  dynamically with a slow feedback loop can overcome this deficiency [24]. But since 200–500-pF capacitors typically resonate with  $L_S$  at 7– 14 MHz [21]–[23], receivers with  $C_R$  on chip operate at high frequency. This means that the gate-drive energy lost to charging and discharging the gates of diode-emulating MOSFETs can be substantial at 7–14 MHz, when  $C_R$  is on chip, especially when considering tiny coils generate little power. Raising  $C_R$  to nanofarads reduces this frequency and its related losses, but only at the expense of an off-chip capacitor and additional board space. Still, this technology is popular because it does not require a synchronizing signal and it transfers power even when the battery is empty.

### B. Non-Resonant Receivers

The non-resonant receiver in Fig. 4 uses switches  $S_N^+$  and  $S_N^-$  to short the pickup coil's  $L_S$  across each half cycle and therefore impress the induced EMF voltage  $v_{EMF,S}$  across  $L_S$ . This way,  $L_S$ energizes from  $v_{EMF,S}$  across each half cycle, which means  $L_S$ 's current  $i_L$  in Fig. 5 climbs up across  $v_{EMF,S}$ 's positive half cycle and down across  $v_{EMF,S}$ 's negative half cycle.  $S_N^+$  opens and  $S_P^+$ closes near the end of the positive half cycle to steer  $i_L$  into  $C_{BAT}$ . Since a current flowing out of a voltage source constitutes power delivered, synchronizing switching events amounts to ensuring  $L_S$ 's current  $i_L$  in Figs. 4 and 5 is positive when  $v_{EMF,S}$  is positive. So depleting  $L_S$  and ensuring  $i_L$  reaches zero at  $v_{EMF,S}$ 's half-cycle crossing is optimal.  $S_P^+$  can open after that [19] or remain closed for another brief period to draw some energy from  $C_{BAT}$  [20]. This investment from  $C_{BAT}$ , which raises  $i_L$  in the negative direction, boosts the electromagnetic damping force with which  $L_S$  draws energy from the magnetic flux present [20]. After this,  $S_N^+$  again closes.

Similarly,  $S_N^-$  opens and  $S_P^-$  closes near the end of the negative half cycle to steer  $i_L$ , which now flows in the opposite direction, into  $C_{BAT}$ .  $S_P^-$  can open when  $i_L$  is zero [19] or remain closed for another brief period to draw an energy investment from  $C_{BAT}$  [20] that boosts the damping force in  $L_S$ . Note that, although depleting  $L_S$  into  $C_{BAT}$  requires time (part of  $\tau_{BAT}^+$  and  $\tau_{BAT}^-$  in Fig. 5),  $v_{EMF,S}$  still supplies charge to  $L_S$  and  $C_{BAT}$  during that time. In other words, the system draws power from  $v_{EMF,S}$  across the entire period.

The main advantage with this approach is the absence of a resonating capacitor. Without  $C_R$ , the system is less sensitive to frequency and more compact. And switching losses are lower when fully integrated on chip because the operating frequency  $f_0$  is low at 125 kHz. Although raising  $f_0$  is possible, switching gate-drive losses can rise to such an extent that they can overwhelm the little power that a tiny pickup coil generates. The challenge here is synchronizing the switching events to  $v_{EMF,S}$ 's half-cycle crossings.

#### III. SELF-SYNCHRONIZING NON-RESONANT POWER RECEIVER AND CHARGER

Since  $i_L$  should be positive when  $v_{EMF,S}$  is positive,  $L_S$  should begin draining before  $v_{EMF,S}$  transitions between half cycles, as Fig. 5 illustrates, and  $i_L$  should reach zero at half-cycle crossings. For this, the system must determine the state of  $v_{EMF,S}$ , except neither  $v_{EMF,S}$  nor the transmitter current  $i_P$  in Fig. 1 that sets  $v_{EMF,S}$  are accessible. The system therefore disconnects  $L_S$ , which interrupts the power-transfer process, for one and a half periods to sense and program  $v_{EMF,S}$ 's transition points for subsequent cycles.

### A. Calibration

During calibration, the system senses the beginning of  $v_{EMF,S}$ 's period  $T_O$  and counts how many clock pulses appear across  $v_{EMF}$ 's half cycle. For this, all switches in Fig. 4 except  $S_N^-$ , which corresponds to  $M_N^-$  in the calibration circuit of Fig. 6, open and  $M_{SEN}^+$  and  $M_{SEN}^-$  connect  $L_S$  across  $R_{SEN}$ , whose impedance is much higher than that of  $L_S$  at  $v_{EMF,S}$ 's operating frequency  $f_O$ . This way,  $v_{EMF,S}$  appears across  $R_{SEN}$ , as the switching nodes  $v_{SW}^+$  and  $v_{SW}^-$  in Fig. 7 show at 0–11 and 71–82 µs, and CP<sub>SEN</sub> in Fig. 6 compares  $v_{EMF,S}$  against zero to generate a digital output  $v_{SEN}$  that is in phase with  $v_{EMF,S}$ . CNT<sub>PRED</sub> then starts counting  $f_{CLK}$  pulses after  $v_{SEN}$ 's first rising transition and stops after  $v_{SEN}$  rises again, at which point register REG<sub>PRED</sub> stores the count.

### B. Synchronization

At the end of calibration, when  $v_{EMF,S}$  enters its positive half cycle,  $M_{SEN}^+$  and  $M_{SEN}^-$  open and  $CNT_{PRED}$  resets to start energizing  $L_S$  from  $v_{EMF,S}$ , as Fig. 7 shows at 11 and 82 µs. When the high-if-equal logic in the synchronizer of Fig. 8 determines that  $CNT_{PRED}$  reaches nearly half REG<sub>PRED</sub>'s recorded count,  $CNT_{PRED}$  resets and  $v_{SYNC}$  commands  $L_S$  to drain into  $C_{BAT}$ . After that,  $L_S$  energizes from  $v_{EMF,S}$  across the negative half cycle until  $CNT_{PRED}$  again reaches nearly half REG<sub>PRED</sub>'s recorded count. Another half-cycle sequence then begins and the process repeats.

Since  $L_S$  should start draining before the onset of another half cycle to ensure  $i_L$  is in phase with  $v_{EMF,S}$ , the subtractor in Fig. 8 uses Phase Correct, which is an off-chip digital word that is programmable, to subtract  $0.5\tau_{BAT}$  counts from the first half-cycle count. This means  $\tau_{SHORT}$  is short of  $0.5T_O$  by  $0.5\tau_{BAT}$ , where part of  $\tau_{BAT}$  is the time that  $L_S$  requires to deplete. As a result,  $L_S$  empties near  $v_{EMF,S}$ 's half-cycle crossings, and in the case of Fig. 7, receives investment energy from  $C_{BAT}$  immediately after that, as  $\tau_{BAT}$  ends.  $S_P^+$  (or  $S_P^-$ ) in Fig. 4 then opens and  $S_N^+$  (or  $S_N^-$ ) closes to energize  $L_S$  from  $v_{EMF,S}$  alone. Note that  $L_S$  receives EMF energy as long as  $i_L$  is nonzero and in phase with  $v_{EMF,S}$ , across every half cycle. The purpose of the 0.5-bit correction is to add a bit every other half cycle when the stored count in REG<sub>PRED</sub> is odd. This way, the 0.5-bit error that results toggles about half of REG<sub>PRED</sub>'s recorded count and never grows.

### C. Recalibration

Since the internal clock  $f_{CLK}$  has no relation to  $v_{EMF,S}$ 's  $f_O$ ,  $T_O$ 's half cycle normally does not fit an exact integer number of  $f_{CLK}$  periods. As a result, the system does not drain  $L_S$  into  $C_{BAT}$  exactly at the half-cycle crossings. Whether under or over forecasted, the synchronizer introduces a quantization error  $\tau_E$  with every half cycle that compounds over time t to shift  $v_{SYNC}$  more and more out of phase with respect to  $v_{EMF,S}$ . This is why the compounded time and phase shifts  $\Delta \tau$  and  $\Delta \theta$  grow with t in Fig. 9, and  $v_{SYNC}$  is slow when  $\tau_E$  is positive and fast otherwise:

$$\Delta \theta = \omega_0 \Delta \tau = 2\pi f_0 \left( \frac{\tau_E}{T_0} \right) t, \qquad (1)$$

where  $\omega_0$  is  $f_0$  in radians per second and t starts when calibration ends. Since the error should not be such that drawing energy from  $v_{EMF.S}$  is impracticable, the system recalibrates after  $CNT_{RECAL}$ in Fig. 8 counts  $N_{PRED}$  number of  $f_0$  periods, which in the case of Fig. 7 is 7 periods. And since  $CNT_{RECAL}$ 's  $v_{RECAL}$  does not usually align exactly with a half-cycle crossing,  $v_{RECAL}$  reconfigures  $S_P^+$  in Fig. 4 to drain  $L_S$  like a diode. This way,  $L_S$  depletes and does not receive investment energy from  $C_{BAT}$  before a recalibration, as  $i_L$  in Fig. 7 shows at 70 µs when  $i_L$  falls to zero.

## IV. POWER TRANSFER

### A. Uncollected Energy

When perfectly in phase,  $v_{EMF,S}$  supplies  $i_L$  at  $f_O$  to source EMF energy per cycle  $E_{EMF,S}^*$ :

$$E_{EMF.S}^{*} = \int_{0}^{T_{o}} P_{EMF.S} dt = \int_{0}^{T_{o}} v_{EMF.S} \dot{i}_{L} dt, \qquad (2)$$

where \* refers to perfect in-phase conditions. When out of phase by  $\Delta \theta_i$ , however,  $v_{EMF,S}$  supplies a cosine fraction of  $E_{EMF,S}^*$ :

$$E_{EMF.S(i)} = E_{EMF.S}^{*} \cos(\Delta \theta_{i}).$$
(3)

So since  $v_{SYNC}$  is more out of phase with  $v_{EMF,S}$  after each period,  $E_{EMF,S(i)}$  falls after each period to accumulate  $E_{TOT}$  in  $N_{PER}$  periods between calibration cycles:

$$E_{\text{TOT}} = \sum_{i=1}^{N_{\text{PER}}} E_{\text{EMF.S}(i)} = E_{\text{EMF.S}} \left[ \sum_{i=1}^{N_{\text{PER}}} \cos(\Delta \theta_i) \right].$$
(4)

In other words, phase shift causes a loss E<sub>PH</sub> between calibration cycles that is equivalent to

$$E_{PH} = N_{PER} E_{EMF.S}^{*} - E_{TOT} = E_{EMF.S}^{*} \left[ N_{PER} - \sum_{i=1}^{N_{PER}} \cos(\Delta \theta_{i}) \right].$$
(5)

The EMF energy that the system ceases to draw during a calibration cycle is unfortunately another loss  $E_{CAL}$ . Because the calibration cycle begins at the end of a positive half cycle and the system counts across one full cycle starting with a positive half cycle,  $E_{CAL}$  is roughly 1.5 $E_{EMF,S}^*$ .

Together, unharnessed power in Fig. 10 first falls when the number of periods between calibrations  $N_{PER}$  rises because the fraction of uncollected energy  $E_{CAL}$  to output energy  $E_{EMF.S}^*$  drops with more energy-collecting periods between calibrations. This trend reverses when a rise in compounded phase-shift losses  $E_{PH}$  outpaces reductions in calibration losses  $E_{CAL}$ , after which point recalibrations help. This is why  $E_{PH}$  and  $E_{CAL}$  are at their combined minimum with 7

periods between calibration cycles when  $f_{CLK}$  is 5 MHz. And because a higher sampling frequency reduces phase-shift error,  $E_{PH}$  does not surpass  $E_{CAL}$  until after 16 periods at 14 MHz.

### B. Consumed Power

Since series resistances consume power, the system loses ohmic conduction power  $P_C$  to  $S_N^+$ ,  $S_N^-$ ,  $S_P^+$ ,  $S_P^-$ , and the parasitic series resistance  $R_S$  of the pickup coil.  $R_S$  therefore loses  $i_{L(RMS)}^2 R_S$  across entire half cycles,  $S_N^+$  and  $S_N^-$ 's combined resistance  $2R_N$  loses  $i_{L,SHORT(RMS)}^2 (2R_N)$  across  $\tau_{SHORT}$ ,  $S_N^- - S_N^+$  and  $S_P^+ - S_P^-$ 's  $R_N$  and  $R_P$  lose  $i_{L,BAT(RMS)}^2 (R_N + R_P)$  across  $\tau_{BAT}$ , and  $S_P^+$ 's diode voltage  $v_D$  lose  $i_{L,DIODE(AVG)}v_D$  just before every calibration cycle:

$$P_{\rm C} = i_{\rm L(RMS)}^2 R_{\rm S} + i_{\rm L.SHORT(RMS)}^2 (2R_{\rm N}) + i_{\rm L.BAT(RMS)}^2 (R_{\rm N} + R_{\rm P}) + i_{\rm L.DIODE(AVG)} v_{\rm D}.$$
 (6)

Charging the combined gate capacitances  $C_G$  of the MOSFETs that comprise the switches also demands energy, so the battery loses gate-drive power  $P_G$  to charge  $C_G$  to  $v_{BAT}$  every period  $T_O$ , but only for N<sub>PER</sub> of every 1.5 + N<sub>PER</sub> cycles:

$$P_{G} = \left(\frac{E_{G}}{T_{O}}\right) \left(\frac{N_{PER}}{1.5 + N_{PER}}\right) = \left(\frac{Q_{C} v_{BAT}}{T_{O}}\right) \left(\frac{N_{PER}}{1.5 + N_{PER}}\right) = C_{G} v_{BAT}^{2} f_{O} \left(\frac{N_{PER}}{1.5 + N_{PER}}\right).$$
(7)

Similarly, digital circuits and the oscillator draw gate-drive power  $P_{DIG}$  more frequently at  $f_{CLK}$  from the battery to charge capacitances.  $C_{OSC}$  in a relaxation oscillator, for example, charges across  $\Delta v_{OSC}$  and combined parasitic gate capacitance  $C_{DIG}$  charges across  $v_{BAT}$  to draw

$$P_{\text{DIG}} = \left(Q_{\text{OSC}} + Q_{\text{DIG}}\right) v_{\text{BAT}} f_{\text{CLK}} = \left(C_{\text{OSC}} \Delta v_{\text{OSC}} v_{\text{BAT}} + C_{\text{DIG}} v_{\text{BAT}}^2\right) f_{\text{CLK}}.$$
(8)

The controller also requires power  $P_{CNTRL}$  to operate. The blocks that operate continuously, for one, dissipate quiescent power  $P_Q$ . The timer circuit that defines  $\tau_{BAT}$ , however, only engages across two  $\tau_{BAT}$ 's of  $T_O$ , so it consumes  $2\tau_{BAT}/T_O$  of the power  $P_{TMR}$  that it draws when it is on. The calibration circuit similarly operates 1.5 of 1.5 +  $N_{PER}$  periods, so the system loses a fraction of the calibration power  $P_{CLBRT}$  it requires. So overall,  $P_{CNTRL}$  is

$$P_{\text{CNTRL}} = P_{\text{Q}} + P_{\text{TMR}} \left( \frac{2\tau_{\text{BAT}}}{T_{\text{O}}} \right) + P_{\text{CLBRT}} \left( \frac{1.5}{1.5 + N_{\text{PER}}} \right).$$
(9)

But since  $f_{CLK}$  is so high,  $P_{DIG}$  overwhelms  $P_G$  and  $P_{CNTRL}$ , and  $P_{DIG}$  and  $P_C$  therefore dominate. V. INTEGRATED CIRCUIT

The receiver in Fig. 11 uses  $v_{SYNC}$  from Fig. 8 to control when to switch the pickup coil and steer  $L_S$ 's charge into the battery  $C_{BAT}$ . When enabled by  $v_{RECAL}$ , and  $v_{SYNC}$  is high, which corresponds to  $v_{EMF,S}$ 's positive half cycle,  $M_N^+$  and  $M_N^-$  close to energize  $L_S$  from  $v_{EMF,S}$ , which is why  $L_S$ 's current  $i_L$  in Fig. 7 rises across 11–14  $\mu$ s. When  $v_{SYNC}$  falls,  $M_N^+$  opens, and after comparator  $CP_{ZVS,P}^+$  senses  $v_{SW}^+$  surpasses  $v_{BAT}$ ,  $M_P^+$  closes to drain  $L_S$  into  $C_{BAT}$ .  $M_P^+$  does not open until after a tunable delay  $\tau_{BAT}$ , across which  $L_S$  drains and then draws energy from  $C_{BAT}$  to lower and reverse  $i_L$  at 15  $\mu$ s, which raises  $L_S$ 's damping force to derive more power from  $v_{EMF,S}$  [18]–[19].

After  $M_P^+$  opens, comparator  $CP_{ZVS,N}^+$  closes  $M_N^+$  when  $v_{SW}^+$  drops below zero. From this point,  $L_S$  energizes across  $v_{EMF,S}$ 's negative half cycle from a negative  $v_{EMF,S}$ . When  $v_{SYNC}$ rises, just prior to  $v_{EMF,S}$ 's transition to its positive half cycle,  $M_N^-$  opens, and after comparator  $CP_{ZVS,P}^-$  senses  $v_{SW}^-$  exceeds  $v_{BAT}$ ,  $M_P^-$  closes to drain  $L_S$  into  $C_{BAT}$ . Like in the positive half cycle,  $M_P^-$  does not open until after a tunable delay  $\tau_{BAT}$ , across which  $L_S$  first drains and then draws energy from  $C_{BAT}$ . After, comparator  $CP_{ZVS,N}^-$  closes  $M_N^-$  when  $v_{SW}^-$  drops below zero to complete the cycle. The sequence then repeats until the system recalibrates.

Note that all switching events in Fig. 5 occur when  $L_S$ 's  $i_L$  is nonzero. So when any of the power switches open,  $i_L$  automatically raises or lowers  $v_{SW}^+$  or  $v_{SW}^-$  until  $CP_{ZVS.N}^+$ ,  $CP_{ZVS.N}^-$ ,  $CP_{ZVS.P}^+$ , or  $CP_{ZVS.P}^-$  engages a switch. In other words, the comparators close  $M_N^+$ ,  $M_N^-$ ,  $M_P^+$ , and  $M_P^-$  only when their drain–source voltages  $v_{DS}$  are nearly zero. This means the MOSFETs do not dissipate I–V-overlap power when  $v_{SW}^+$  and  $v_{SW}^-$  transition, when  $v_{DS}$ 's are high.

## A. Zero-Volt Comparators

Since  $CP_{ZVS,P}^{+}$  and  $CP_{ZVS,P}^{-}$  compare  $v_{SW}^{+}$  and  $v_{SW}^{-}$  with  $v_{BAT}$ , PFET  $M_{GC2}$  in Fig. 12a balances  $M_{GC1}$ 's mirrored gate-coupled counterpart when  $v_{SW}$  is at  $v_{BAT}$ . But since  $M_{MIR3}$  steers an offset current only when  $v_{SW}$  is below  $v_{BAT}$ , the output  $v_{ZVS(H)}$  rises when  $v_{SW}$  climbs over  $v_{BAT}$  and drops when  $v_{SW}$  crosses  $v_{BAT}$  on its way down.  $v_{ZVS(H)}$  rises within 10 ns in Fig. 13 to engage and steer some of  $i_L$  through  $M_P^+$  or  $M_P^-$  because  $i_L$  supplies  $M_{GC2}$  considerably more current than  $M_{GC1}$ 's 50 nA.  $M_{GC2}$  in Fig. 12b similarly raises  $v_{ZVS(L)}$  in 10 ns when  $v_{SW}$  falls below 0 V.

#### B. EMF Sense Comparator

Since the voltage across  $R_{SENSE}$  in the calibration circuit of Fig. 6 is low and near 0 V, gatecoupled NMOS pair  $M_{GC1}$  and  $M_{GC2}$  senses when  $v_{SW}^+$  and  $v_{SW}^-$  crisscross. The differential output, whose gain  $R_{DIFF1}-R_{DIFF2}$  limits, then drives an NMOS differential pair with a latching PMOS load mirror that accelerates its response.  $M_{HYST}$  sinks an offset current when sensing a positive to negative transition in  $v_{EMF.S}$  to keep noise voltage in  $v_{EMF.S}$  from producing jitter in the output  $v_{DEC}$ . To save power,  $v_{CAL}$  and  $v_{SEN}$  disconnect and disable the circuit between calibrations. When calibration begins,  $v_{CAL}$  rises to establish a bias voltage across  $M_{BI3}$  and connect  $R_{SENSE}$  across  $v_{SW}^+$  and  $v_{SW}^-$ . And after all other connections settle and  $R_{SENSE}$  consumes all remnant energy in the parasitic capacitances at  $v_{SW}^+$  and  $v_{SW}^-$ ,  $v_{SEN}$  rises to connect  $R_{SENSE}$ across  $M_{GC1}-M_{GC2}$ 's sources. Then while sensing,  $C_{FILT}$  filters high-frequency noise.

### C. Relaxation Oscillator

When  $v_{OSC}$  is high in Fig. 15,  $M_{CC1}$  shuts and the latching PMOS load feeds  $M_{CC2}$  two bias currents  $2I_{OSC}$  to discharge  $C_{OSC}$  with  $I_{OSC}$ .  $v_{OSC}$  therefore falls across  $\Delta v_{OSC}$  until  $M_{L1}-M_{L2}$ 's source–gate voltage  $v_{SGL}$  is high enough to engage  $M_{L2}$ , after which  $M_{CC1}$ 's gate rises,  $M_{L4}$  shuts, and  $M_{CC2}$ 's gate drops. As a result,  $M_{CC2}$  shuts and the latching PMOS load steers  $2I_{OSC}$  into  $M_{CC1}$  to raise  $v_{OSC}$  until  $M_{L4}$ – $M_{L3}$ 's  $v_{SGL}$  is again high enough to engage  $M_{CC2}$  and shut  $M_{CC1}$ . To swing each terminal across  $v_{SGL}$ ,  $v_{OSC}$  swings  $2v_{SGL}$  in alternating cycles:

$$\Delta v_{\rm OSC} = 2v_{\rm SGL} = \frac{I_{\rm OSC}}{C_{\rm OSC}} \left(\frac{T_{\rm CLK}}{2}\right). \tag{10}$$

 $M_{PP1}$  and  $M_{PP2}$  then fold and compare the latching currents to generate a digital signal that a high-threshold inverter buffers for gain and sharper clock edges. The oscillating period  $T_{CLK}$  that results in the output  $v_{CLK}$  establishes the system's clock  $f_{CLK}$  to

$$f_{CLK} = \frac{1}{T_{CLK}} = \frac{I_{OSC}}{4v_{SGL}C_{OSC}}.$$
(11)

### D. Delay Timer

A rise in  $v_{TMR}$  starts  $\tau_{BAT}$  and opens  $M_{DIS}$  in Fig. 16a to allow  $M_{CHG}$ 's bias current  $I_{CHG}$  to charge  $C_{RAMP}$ . When  $C_{RAMP}$ 's  $v_{RAMP}$  rises above  $V_{REF}$ 's 0.8 V, comparator  $CP_{TMR}$  stops  $\tau_{BAT}$  and closes  $M_{DIS}$  to reset  $v_{RAMP}$  to 0 V.  $\tau_{BAT}$  is therefore the time that  $I_{CHG}$  requires to raise  $v_{RAMP}$  to  $V_{REF}$ :

$$\tau_{\rm BAT} = \frac{C_{\rm RAMP} V_{\rm REF}}{I_{\rm CHG}} = \frac{C_{\rm RAMP} V_{\rm REF}}{16I_{\rm EXT}},$$
(12)

where  $I_{CHG}$  is  $16I_{EXT}$  and  $I_{EXT}$  and  $V_{REF}$  are off chip for testability purposes. This way,  $\tau_{BAT}$  is 70 ns to 1.8 µs when  $I_{EXT}$  is 30 nA to 1 µA. The purpose of  $M_{PASS}$  is to keep  $M_{CHG}$  from conducting and dissipating power when the circuit is off.

For this functionality,  $CP_{TMR}$ 's  $M_{NIN-}-M_{PIN-}$  and  $M_{NIN+}-M_{PIN+}$  in Fig. 16b compare  $v_{RAMP}$ and  $V_{REF}$ .  $M_{OUT}$  then buffers  $M_{NIN-}-M_{PIN-}$ 's output to pull  $CP_{TMR}$ 's  $v_{OUT}$  to 0 V quickly.  $M_{NIN-}-M_{PIN-}$  sinks a current that is much greater than the circuit's bias current when  $v_{RAMP}$  rises above  $V_{REF}$  to accelerate the transition. And  $M_{HYS}$  sinks an offset current when  $CP_{TMR}$ 's  $v_{OUT}$  is high, after the circuit resets, to establish a hysteresis that reduces output jitter.

### VI. PROTOTYPE

An off-chip 300-nF SMD ceramic capacitor  $C_{BAT}$ , off-chip 400-µH 2.6 × 3.5 × 11.7-mm<sup>3</sup> Coilcraft 4513TC pickup coil, and 0.18-µm 510 × 510-µm<sup>2</sup> receiver in Fig. 17 implement the battery and power receiver described in Sections III–V. Although larger pickup coils harness more electromagnetic energy, microsensors cannot accommodate large devices. So under given space constraints, the coil with the least series resistance (i.e., highest quality factor) dissipates the least power. And because transferring energy requires time, the coil's inductance should be low enough to draw the investment energy required from the battery within a half cycle. The pickup coil's equivalent series resistance (ESR) is 9.66  $\Omega$  with a quality factor of 29 at 125 kHz, which is the system's operating frequency f<sub>0</sub>. Transmission distance d<sub>C</sub> and the coil voltage that d<sub>C</sub> induces as v<sub>EMF.S</sub> are adjustable. Since C<sub>BAT</sub>'s 300 nF invests and receives power across discrete 0.5–1.5-µs  $\tau_{BAT}$  intervals in Fig. 5, v<sub>BAT</sub> incorporates a ripple that, in addition to C<sub>BAT</sub>'s steady-state charge rate, is roughly 5–25 mV when the coils are 10 to 50 mm apart.

### A. Output Power and Power-Conversion Efficiency

Since phase-shift and calibration losses  $P_{PS}$  and  $P_{CAL}$  subtract power from what  $v_{EMF.S}$  can ultimately source as  $P_{EMF.S}^{*}$ , the system receives  $P_{EMF.S}^{*} - P_{PS} - P_{CAL}$  as EMF power  $P_{EMF.S}$ . Conduction, gate-drive, digital, and quiescent losses in the circuit then subtract power from  $P_{EMF.S}$  to leave  $P_{EMF.S} - P_C - P_G - P_{DIG} - P_Q$  for  $C_{BAT}$ . Power-conversion efficiency  $\eta_R$  is therefore the fraction of  $P_{EMF.S}$  that reaches  $C_{BAT}$  as  $P_{BAT}$ :

$$\eta_{\rm R} = \frac{P_{\rm O}}{P_{\rm IN}} = \frac{P_{\rm BAT}}{P_{\rm EMF.S}} = \frac{\left(P_{\rm EMF.S}^{*} - P_{\rm PS} - P_{\rm CAL}\right) - P_{\rm C} - P_{\rm G} - P_{\rm DIG} - P_{\rm Q}}{P_{\rm EMF.S}^{*} - P_{\rm PS} - P_{\rm CAL}}.$$
(13)

In this light, with 10 mm of separation  $d_C$  between the transmitting and receiving coils  $L_P$  and  $L_S$  in Fig. 1, the prototyped system draws energy from an induced 585-mV<sub>PK</sub> v<sub>EMF.S</sub> to output 560  $\mu$ W into C<sub>BAT</sub> as P<sub>BAT</sub>, as Fig. 18 demonstrates. P<sub>BAT</sub> is not higher because small coils

capture a small fraction of the emanating electromagnetic field and the system loses phase-shift, calibration, conduction, gate-drive, digital, and quiescent power. Of the power drawn from  $C_{BAT}$  and  $L_S$ , the fraction that  $C_{BAT}$  gains above what  $C_{BAT}$  supplies is 84% at 10 mm, as  $\eta_R$  shows.

Since coils harness less energy when farther apart from their emanating source,  $v_{EMF.S}$ 's peak–peak voltage falls as d<sub>c</sub> increases, and as a result, so does P<sub>BAT</sub>. In other words, power-transmission efficiency across the transponder, between the transmitting and receiving coils, falls when d<sub>c</sub> rises. Receiver efficiency, however,  $\eta_R$  is fairly even at 70%–84% within 30 mm and only down to 67% at 40 mm because ESR and MOS conduction losses P<sub>C(ESR)</sub> and P<sub>C(MOS)</sub> dominate and scale with P<sub>BAT</sub>. Beyond 40 mm, 7.8 µW of quiescent and f<sub>O</sub>- and f<sub>CLK</sub>-switched losses in P<sub>G</sub>, P<sub>DIG</sub>, and P<sub>Q</sub>, which do not scale with P<sub>BAT</sub>, dominate, so losses become a greater fraction of P<sub>BAT</sub> and  $\eta_R$  drops more rapidly. At 50 mm and 66 mV<sub>PK</sub> of v<sub>EMF.S</sub>, P<sub>BAT</sub> and  $\eta_R$  therefore fall to 16 µW and 38%. In this region, P<sub>BAT</sub> peaks when  $\tau_{BAT}$  is 1.8 µs, and falls when extending  $\tau_{BAT}$  beyond 1.8 µs because investing more energy from C<sub>BAT</sub> dissipates more power than it generates [19], [25]–[26].

For a given transmitted power, coil separation, and corresponding coupling factor, EMF power  $P_{EMF,S}$  delivers maximum output power  $P_O$  when  $P_O$  matches ohmic losses in the pickup coil's equivalent series resistance  $P_{C(ESR)}$  and conducting MOS switches  $P_{C(MOS)}$ . In this sense,  $P_O$  represents the loss of a resistance  $R_O$  whose value matches that of  $R_S$ ,  $M_N^+$ ,  $M_N^-$ ,  $M_P^+$ , and  $M_P^-$  combined when  $P_O$  is at its maximum power point. But since  $P_{EMF,S}$  also supplies gate-drive, digital, and quiescent losses,  $P_O$  is  $P_{BAT}$  plus all these losses. In Fig. 18,  $P_O$  is nearly  $P_{BAT}$  and matches  $P_{C(ESR)}$  and  $P_{C(MOS)}$  when the coils are roughly 36 mm apart, so  $P_{BAT}$  is as high as possible at this point. This, however, does not mean the transmitter delivers as much power as

match conduction losses in the transmitter  $P_{C(T)}$ . This is why  $P_O$  climbs with proximity in Fig. 18, because reflected load power in the transmitter rises, but never reaches or surpasses  $P_{C(T)}$ . In other words,  $P_{BAT}$  peaks when losses are low and the transmitter's reflected load matches  $P_{C(T)}$ , which is when the receiver optimally damps the transmitting source [18].

#### *B.* Calibration Frequency

Interestingly, reducing the frequency of calibrations, which amounts to counting more  $v_{EMF,S}$  periods before recalibrating, raises  $P_{BAT}$ , at least initially, as Fig. 19 shows. The reason for this rise in  $P_{BAT}$  is the power that the system does not harness during a calibration phase is greater than the power lost to phase-shift error. With more  $v_{EMF,S}$  periods between calibrations and a 9.2-MHz clock,  $P_{BAT}$  eventually flattens and ultimately peaks, past which point phase-shift error dominates.  $P_{BAT}$  does not peak with a 14-MHz clock because the programmable range of  $N_{PRED}$ , which is the number of  $v_{EMF,S}$  periods between calibrations, tops at fifteen, below the threshold above which phase-shift error dominates when  $f_{CLK}$  is 14 MHz.

 $P_{BAT}$  also falls when  $f_{CLK}$  rises from 9.2 to 14 MHz. This reduction results because a faster clock consumes more power and a higher sampling rate raises  $f_{CLK}$ -switched losses  $P_{DIG}$  from 6.2 to 9.9  $\mu$ W. So in spite of a lower phase-shift error, the system draws more additional power from  $C_{BAT}$  at 14 MHz than from  $v_{EMF,S}$  to net a lower gain. In other words, power lost to phase-shift error is not as limiting as  $f_{CLK}$ -switched losses are, so a slower clock is better. This is why maximum transmission distance  $d_{C(MAX)}$  in Fig. 20 peaks at 7 cm when  $f_{CLK}$  is 5.25 MHz. Note that  $d_{C(MAX)}$  is the distance above which the system cannot output power, so  $d_{C(MAX)}$  corresponds to the minimum EMF voltage  $v_{EMF,S(MIN)}$  below which  $P_{BAT}$  is negative.

# C. Operating Frequency

With a  $\pm 20\%$  variation in v<sub>EMF.S</sub>'s operating frequency f<sub>O</sub> about 125 kHz, the minimum EMF

voltage  $v_{EMF,S(MIN)}$  rises 33% in Fig. 21. Although the percentage drop seems significant, the resulting 15-mV deviation is small. This is because the synchronizer calibrates and adjusts to f<sub>0</sub>. For perspective, consider that this adaptability is absent in resonant receivers, where a ±20% mismatch between operating and resonating frequencies results in a 530-mV variation in  $v_{EMF,S(MIN)}$  [20].

# D. Relative Performance

One fundamental advantage of the non-resonant receiver presented here and in [19]–[20] is that it can operate at kilohertz without off-chip capacitors, whereas resonant receivers with up to 514 pF operate at 7–14 MHz [21]–[23], as Table I shows. This means that switching losses are lower and output power is therefore higher when constrained to on-chip integration. Another benefit is frequency insensitivity, because mismatches in [25]–[26] reduces output power  $P_{BAT}$  by considerably more than the same variation would here. Another attribute is the ability to invest battery energy, and with it, raise the electrical damping force with which a small pickup coil can draw power. Note that the difference between [19] and [20] is the ability to invest battery energy and between [20] and this work the ability to synchronize to  $v_{EMF,S}$ . Ultimately, the drawback here is complexity, because controllers and synchronizers are not necessary in resonant receivers.

#### VII. CONCLUSIONS

With 38%–84% power-conversion efficiencies across 1.0-5.0 cm, the 0.18-µm CMOS power receiver prototyped and presented here generates up to 557 µW and operates when  $v_{EMF,S}$  is as little as 46.6 mV<sub>PK</sub> across a coil separation of up to 7.0 cm. The driving advantages of this technology and those of [19]–[20] over their resonant counterparts are low-frequency operation, on-chip integration, and frequency insensitivity. And while [19] and [20] require transmitter information, this system synchronizes to  $v_{EMF,S}$  on its own by counting and using the number of

clock pulses across a full cycle during a calibration phase to forecast future switching events. This way, the self-synchronizing receiver adjusts to the transmitter and draws more energy across farther distances. This means a microsystem can remain wireless between longer recharge cycles.

### ACKNOWLEDGEMENT

The authors thank Paul Emerson and Texas Instruments for supporting this research and fabricating the IC.

#### References

- [1] B.W. Cook, S. Lanzisera, and K.S.J. Pister, "SoC issues for RF smart dust," *Proc. IEEE*, vol. 94, no. 6, pp. 1177–1196, Jun. 2006.
- [2] G. Chen, H. Ghaed, R. Haque, M. Wieckowski, Y. Kim, G. Kim, D. Fick, D. Kim, M. Seok, K. Wise, D. Blaauw, and D. Sylvester, "A Cubic-Millimeter Energy-Autonomous Wireless Intraocular Pressure Monitor," in *Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers*, Feb. 2011, pp. 310–312.
- [3] G. Chen, S. Hanson, D. Blaauw, and D. Sylvester, "Circuit Design Advances for Wireless Sensing Applications," *Proc. IEEE*, vol. 98, no. 11 pp. 1808-1827, Nov. 2010.
- [4] D. Linden and T.B. Reddy, "Handbook of Batteries, 4<sup>th</sup> ed. New York: McGraw-Hill, 2010.
- [5] M.W. Baker and R. Sarpeshkar, "Feedback Analysis and Design of RF Links for Low-Power Bionic Systems," *IEEE Trans. Biomed. Circuits Syst.*, vol. 1 no. 1, pp. 28–38, Mar. 2007.
- [6] B. Lenaerts and R. Puers, *Omnidirectional Inductive Powering for Biomedical Implants*. Dordrecht: Springer, 2009.
- [7] K. V. Schuylenbergh and R. Puers, *Inductive Powering: Basic Theory and Applications to Biomedical Systems*. Dordrecht: Springer, 2009.
- [8] J. Yoo, L.Yan, S. Lee, Y. Kim, and H.-J. Yoo, "A 5.2 mW Self-Configured Wearable Body Sensor Network Controller and a 12 μW Wirelessly Powered Sensor for a Continous Health Monitoring System," *IEEE J. Solid-State Circuits*, vol. 45, no. 1, pp. 178-188, Jan. 2010.
- [9] K. Tomita, R. Shinoda, T. Kuroda, and H. Ishikuro, "1-W 3.3-16.3-V Boosting Wireless Power Transfer Circuits With Vector Summing Power Controller," *IEEE J. Solid-State Circuits*, vol. 47, no. 11, pp. 2576-2585, Nov. 2012.
- [10] P. Li and R. Bashirullah, "A Wireless Power Interface for Rechargeable Battery Operated Medical Implants," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 54, no. 10, pp.912–916, Oct. 2007.
- [11] Y. Jang and M. M. Jovanovic, "A Contactless Electrical Energy Transmission System for Portable-Telephone Battery Chargers," *IEEE Trans. Ind. Electron.*, vol. 50, no. 3, pp. 520-527, Jun. 2003.
- [12] K. Marian, A. Moradewicz, J. Duarte, E. Lomonowa, and C. Sonntag, "Contactless Energy Transfer," in *Power Electronics and Motor Drives*, J. D. Irwin, Ed., 2nd ed. Boca Raton: CRC Press, 2011, pp. 1-19.
- [13] F.W. Grover, *Inductance Calculations: Working Formulas and Tables*. New York: D. Van Nostrand Co., 1946.
- [14] H. Chung, A. Radecki, N. Miura, H. Ishikuro, and T. Kuroda, "A 0.025–0.45 W 60%-Efficiency Inductive-Coupling Power Transceiver with 5-Bit Dual-Frequency Feedforward Control for Non-Contact Memory Cards," *IEEE J. Solid-State Circuits*, vol. 47, no. 10, pp. 2496-2504, Oct. 2012.
- [15] S.-Y. Lee, J.-H. Hong, C.-H. Hsieh, M.-C. Liang, and J.-Y. Kung, "A Low-Power 13.56 MHz RF Front-End Circuit for Implantable Biomedical Devices," *IEEE Trans. Biomed. Circuits Syst.*, vol. 7, no. 3, pp. 256-265, June 2013.
- [16] H.-M. Lee and M. Ghovanloo, "An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications," *IEEE Trans. Circuits and Syst. I, Reg. Papers*, vol. 58, no. 8, pp. 1749-1760, Aug. 2011.
- [17] C. Sauer, M. Stanaćević, G. Cauwenberghs, and N. Thakor, "Power Harvesting and Telemetry in CMOS for Implanted Devices," *IEEE Trans. Circuits and Syst. I, Reg. Papers*, vol. 52, no. 12, pp. 2605-2613, Dec. 2005.
- [18] R. D. Prabha, D. Kwon, O. Lazaro, K. D. Peterson, and G. A. Rincón-Mora, "Increasing Electrical Damping in Energy-harnessing Transducers," *IEEE Trans. Circuits and Syst. II, Exp. Briefs*, vol. 58, no. 12, pp. 787-791, Dec. 2011.
- [19] O. Lazaro and G. A. Rincón-Mora, "Inductively Coupled 180-nm CMOS Charger with Adjustable Energyinvestment Capability," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 60, no. 8, pp. 482–486, Aug. 2013.
- [20] O. Lazaro and G. A. Rincón-Mora, "180-nm CMOS Wideband Capacitor-free Inductively Coupled Power Receiver and Charger," *IEEE J. Solid-State Circuits*, vol. 48, no. 11, pp. 2839-2849, Nov. 2013.
- [21] J.-H. Choi, S.-K. Yeo, C.-B. Park, S. Park, J.-S. Lee, and G.-H. Cho, "A Resonant Regulating Rectifier (3R) Operating at 6.78 MHz for a 6W Wireless Charger with 86% Efficiency," *ISSCC Dig. Tech. Papers*, pp. 64–65, Feb. 2013.
- [22] Y. Lu, X. Li, W.-H. Ki, C.-Y. Tsui, C. Patrick Yue "A 13.56MHz Fully Integrated 1X/2X Active Rectifier with Compensated Bias Current for Inductively Powered Devices," *ISSCC Dig. Tech. Papers*, pp. 66–67, Feb. 2013.

- H.-M. Lee and M. Ghovanloo, "An Adaptive Reconfigurable Active Voltage Double/Rectifier for [23] Extended-Range Inductive Power Transmission," *ISSCC Dig. Tech. Papers*, pp. 286-287, Feb. 2012.G. A. Covic, J. T. Boys, A. M. W. Tam, and J. C. H. Peng, "Self Tuning Pick-Ups for Inductive Power
- [24] Transfer," in Power Electronics Specialints Conference, 2008. PESC 2008. IEEE, 2008, pp. 3489-3494.
- H.L. Li, A.P. Hu, G.A. Covic, and C.S. Tang, "Optimal Coupling Condition of IPT System for Achieving [25] Maximum Power Transfer," IET Electron. Lett., vol. 45, no. 1, pp. 76-77, Jan. 2009.
- M. Zargham and P.G. Gulak, "Maximum Achievable Efficiency in Near-Field Coupled Power-Transfer [26] Systems", IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 3, pp. 228-245, Jun. 2012.

FIGURES



Figure 1. Inductively powered microsystem.



Figure 2. Resonant wireless power receiver.



Figure 3. Time-domain waveforms of the resonant receiver.



Figure 4. Non-resonant wireless power receiver.



Figure 5. Induced EMF voltage  $v_{\text{EMF,S}}$  and measured coil current, synchronizing signal, and switching node voltages.



Figure 6. Calibration circuit – transistor dimensions are in µm.



Figure 7. Measured coil voltage, coil current, and switching node voltages.



Figure 9. Measured coil currents for positive (slow) and negative (fast) phase-shift errors  $\tau_E$ .



Figure 10. Unharnessed power across the number of periods per calibration cycle and sampling frequency.



Figure 11. Prototyped non-resonant wireless power receiver.



Figure 12. (a) High-side and (b) low-side zero-volt switching comparators CP<sub>ZVS.P</sub> and CP<sub>ZVS.N</sub>.



Figure 13. Measured battery current and positive switching node voltage about and across  $\tau_{BAT}^{+}$ .



Figure 14. EMF sense comparator.



Figure 15. Relaxation oscillator.



Figure 16. Delay (a) timer and (b) corresponding comparator.



Figure 17. Photographs of the 0.18-µm CMOS die, PCB, and experimental setup.



Figure 18. Measured output power, system losses, and power-conversion efficiency across transmission distance and induced coil voltage.



Figure 19. Measured output power across the number of  $v_{\text{EMF,S}}$  periods between recalibrations at 9.2 and 14 MHz.



Figure 20. Measured maximum transmission distance and corresponding minimum EMF voltage across clock frequency.



Figure 21. Measured minimum EMF voltage across operating frequency.

|                        | ISSCC13 [21]            | ISSCC13 [22]                    | ISSCC12 [23]                       | TCASII [19]                         | JSSC [20]                           | This Work                           |
|------------------------|-------------------------|---------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Receiver<br>Structure  | Series Resonant         | Parallel<br>Resonant            | Parallel<br>Resonant               | Non-resonant                        | Non-resonant                        | Non-resonant                        |
| Resonant<br>Capacitor  | 200 pF                  | 514 pF                          | 336 pF                             | None                                | None                                | None                                |
| Rectifier Type         | Regulating<br>Rectifier | Voltage Doubler/<br>Rectifier   | Voltage<br>Doubler/<br>Rectifier   | Inductor-based<br>Current Rectifier | Inductor-based<br>Current Rectifier | Inductor-based<br>Current Rectifier |
| Synchronization        | Self                    | Self                            | Self                               | Off Chip                            | Off Chip                            | Self                                |
| Battery<br>Investment  | Not Possible            | Not Possible                    | Not Possible                       | Possible                            | Not Possible                        | Possible                            |
| Operating<br>Frequency | 6.78 MHz                | 13.56 MHz                       | 13.56 MHz                          | 125 kHz                             | 125 kHz                             | 125 kHz                             |
| Rectified Voltage      | 5 V                     | 1.3 – 4 V                       | 1X: 3.1 – 3.7 V<br>2X: 2.2 – 3.1 V | 1 – 1.5 V                           | 1 – 1.5 V                           | 1 – 1.8 V                           |
| Receiver<br>Efficiency | 86%                     | 1X: 84%<br>2X: 76%              | 1X: 77%<br>2X: 70%                 | 86%                                 | 82%                                 | 84%                                 |
| Chip Technology        | 0.35 μm<br>BiCMOS/DMOS  | 0.35 μm<br>CMOS                 | 0.5 μm<br>CMOS                     | 0.18 μm<br>CMOS                     | 0.18 μm<br>CMOS                     | 0.18 μm<br>CMOS                     |
| Die Area               | 5.52 mm <sup>2</sup>    | 0.11 mm <sup>2</sup>            | 0.59 mm <sup>2</sup>               | 0.26 mm <sup>2</sup>                | 0.26 mm <sup>2</sup>                | 0.26 mm <sup>2</sup>                |
| Pickup Coil Size       | Not Stated              | 18 mm Diameter<br>Loop Inductor | 30 mm Diameter<br>Loop Inductor    | 2.6×3.5×11.7 mm <sup>3</sup>        | 2.6×3.5×11.7 mm <sup>3</sup>        | 2.6×3.5×11.7 mm <sup>3</sup>        |

| TABLE I RELATIVE PERFORMANCE     |
|----------------------------------|
| THEE I. REENTIVE I ERI ORIGINATE |

1X: Rectifier Efficiency, 2X: Doubler Efficiency