Lowest V_{IN} Possible for Switched-Inductor Boost Converters

Tianyu Chang, Graduate Student Member, IEEE, and Gabriel A. Rincón-Mora, Fellow, IEEE
Georgia Institute of Technology, Atlanta, Georgia 30332-0250, U.S.A.
E-mail: tianyuchang@gatech.edu and Rincon-Mora@gatech.edu

Abstract—The minimum input voltage from which switched-inductor boost converters can draw power is a critical parameter, especially for power supplies that draw power from low-voltage sources like thermoelectric generators. When a battery is absent or fully discharged, the power supply relies on a millivolt input to wake and supply the system. This paper explains and quantifies what determines this minimum threshold both with and without a charged battery present. Analyses show that CMOS converters can wake with 44 mV, but not output power until the input source voltage V_S is 268 mV. With a charged battery, they can transfer energy with 4.6 mV, but not output net power until V_S is 64 mV.

Keywords—Switched inductor, CMOS boost converter, power supply, charger, minimum input voltage, wake, startup.

I. SWITCHED-INDUCTOR BOOST CONVERTERS

Wireless microsystems can save energy and save lives [1]–[4]. They can rely on 40–350-mV photovoltaic (PV) cells and thermoelectric generators (TEGs) for energy and power [5]. Chargers and regulators must therefore boost this 40–350-mV photovoltaic cells and the low voltage levels of the input and the output of an inverter, respectively. An inverter is a series stack of PMOS and NMOS, so the gate-source voltages V_{GS}'s and the drain-source voltages V_{DS}'s of the inverter's PMOS and NMOS add up to V_{IN}:

$$V_{IN} = V_{GSP} + V_{GSN} = V_{SDP} + V_{DSN}, \quad (1)$$

where V_{IN} is the oscillator's supply voltage as labeled in Fig. 2. When the inverter's input is high and output is low, its PMOS and NMOS current i_{MPST} equals its NMOS current i_{MNST}, and vice versa:

$$i_{MNST} = i_{MPST} = I_n \frac{W}{L} \exp \left(\frac{V_{GS}}{nV_T} \right) \left[1 - \exp \left(\frac{-V_{DS}}{V_T} \right) \right], \quad (2)$$

where n is sub-threshold slope factor, and V_T is thermal voltage. When the inverter's input is high and output is low, its PMOS current i_{MPST} equals its NMOS current i_{MNST}, and vice versa:

$$i_{MNST} = i_{MPST} = I_n \frac{W}{L} \exp \left(\frac{V_{GS}}{nV_T} \right) \left[1 - \exp \left(\frac{-V_{DS}}{V_T} \right) \right]. \quad (3)$$

The oscillator halts if V_{OH} equals V_{OL}, and it oscillates if V_{OH} is higher than V_{OL} [9]. Solving the lowest V_{S} such that V_{OH} is higher than V_{OL} using (1)–(4) gives $V_{W(FL)}$. Fig. 3 plots the calculated $V_{W(FL)}$ versus PMOS and NMOS widths W_P and W_N.

In addition to [9], this paper finds the optimal W_P and W_N. In Fig. 3, the solid line labels the lowest $V_{W(FL)}$ (denoted by $V_{W(FL)}$). It shows that the optimal W_P and W_N can counter the...
differences between PMOS and NMOS in mobility μ, sub-threshold slope factor n, and MOSFET threshold voltage V_{TH} to balance their strengths, and thus can reduce $V_{W(IF)}$. $V_{W(IF)}'$ is 44 mV in simulation. By observation the optimal sizes satisfy:

$$\frac{(W/L)_{W}}{(W/L)_{IN}} = \frac{I_{W}}{I_{IN}} = \frac{\mu_{W}n_{W}e^{\left(\frac{V_{TH}}{n_{W}V_{IN}} - \frac{V_{TH}}{n_{IN}V_{IN}}\right)}}{\mu_{IN}n_{IN}}. \tag{5}$$

Fig. 4 plots the error compared with simulations. The highest error of the $V_{W(IF)}$ analysis is 7.06%. With V_{TH} variations, $V_{W(IF)}'$ is about 44–220 mV across corners.

B. Wake Loss-Limited Output Threshold

This paper finds $V_{W(O)}$ in two steps. First, find the lowest V_{IN} for $E_{IN(D)} + E_{L(PK)} > E_{CSW}(V_{O} + V_{D})$. Substitute (7), (8), and (9) into (6), and solve for V_{IN}:

$$V_{IN} = v_{RS} + v_{L} + v_{W(O)} = v_{RS} + v_{L}, \tag{14}$$

and $V_{W(O)}$ is the lowest V_{S} such that V_{O} can be charged to V_{HR}.

The highest error of the $V_{W(O)}$ analysis is 9.84%.

V_{HR} is 1V, R_{S} is 350 Ω (TEG resistance [11]), V_{D} is 0.4 V, and I_{OSC} is 100 μA in calculations and simulations. Fig. 6 plots the calculated $V_{W(O)}$ versus W_{MG} and L_{X}. Raising W_{MG} lowers R_{MG} and thus reduces the lowest V_{IN} required to output energy. But raising W_{MG} raises M_{G}'s parasitic capacitance. This raises $i_{C(MG,AVG)}$ and raises v_{RS}. Therefore, the lowest source voltage $V_{W(O)}$ (denoted by $V_{W(O)}'$ in Fig. 6) for a given L_{X} satisfies:

$$\frac{\partial V_{W(O)}}{\partial W_{MG}} = \frac{\partial v_{RS}}{\partial W_{MG}} + \frac{\partial v_{IN}}{\partial W_{MG}} \approx 0. \tag{15}$$

where W_{MG} and L_{MG} are M_{G}'s width and length. Neglecting the oscillator's current consumption I_{OSC}, the theory finds V_{RS} by:

$$v_{RS} = i_{RS(AVG)}R_{S} = \left(i_{L(AVG)} + i_{C(MG,AVG)}\right)R_{S}. \tag{13}$$

The theory then finds the minimum source voltage $V_{W(O)}'$ by:

$$V_{W(O)}' = v_{RS} + v_{IN}. \tag{14}$$

Since the SL boost often wakes the system with a low V_{S} [6], $V_{W(O)}'$ is 350 Ω (TEG resistance [11]), V_{D} is 0.4 V, and I_{OSC} is 100 μA in calculations and simulations. Fig. 7 plots the calculated $V_{W(O)}'$ versus W_{MG} and L_{X}. Raising W_{MG} lowers R_{MG} and thus raises $V_{W(O)}'$. Thus, V_{HR} should be the lowest voltage that meets system specifications.
III. STATIC THRESHOLDS

When the SL boost's output v_O is above V_{HR}, which is the lowest voltage to supply the system's controller and to fully turn on power switches [6], v_O supplies the controller and the gate-driver in Fig. 9. This way, the boost charges or regulates v_O until input power P_{IN} is high enough to overcome all the power losses, including the power lost in the v_O-supplied controller and the gate-drivers. Static loss-limited output threshold v_{SOX} is thus the lowest v_S such that the boost can operate.

Static transfer-limited threshold v_{SOX} is the lowest v_S such that i_L can charge C_{SW} until comparator CPO closes MO [14] to let i_L drain and transfer energy into C_O. However, the boost does not output net power to v_O until input power P_{IN} is high enough to overcome all the power losses, including the power lost in the v_O-supplied controller and the gate-drivers. Static loss-limited output threshold v_{SOX} is thus the lowest v_S such that the boost can output net power when operating with a charged output.

A. Static Functional Threshold

In static operation v_O is above V_{HR}, so the controller and the driver can always operate. Therefore, the SL boost can always draw energy from v_S if v_S is above 0 V. Therefore, v_{SF} is 0 V.

B. Static Transfer-Limited Threshold

In static operation, the v_O-supplied driver turns M_G fully on. Thus, M_G's on-resistance R_{MG} is low (less than 1 Ω). Again, for miniaturized systems, the miniature inductor's ESR R_L can be up to 110 Ω. Thus, R_L overwhelms R_{MG}, and R_{MG} is neglected.

L_X can transfer energy to v_O if its peak energy $E_{L(PK)}$ offers energy $E_{IN(D)}$ across the drain phase t_D. $E_{L(PK)}$ is:

$$E_{L(PK)} = 0.5 i_L(PK)^2 R_L$$

(17)

$E_{CSW(VO)}$ is the energy lost in C_{SW}. $E_{CSW(VO)}$ is:

$$E_{CSW(VO)} = 0.5 C_{SW} v_O^2$$

(18)

Similarly, at v_{SOX}, i_L drains into C_{SW} across a quarter of L_X-C_{SW} resonance period t_{LC}. During this drain time t_D, E_{RL} is:

$$E_{RL} = i_L(DMS)^2 R_L t_D = \frac{i_L(PK)^2}{2} R_L t_L = \frac{i_L t_L}{4}$$

(19)

where $i_L(DMS)$ is L_X's root-mean-square (RMS) current during t_D. Like (9), during this drain time t_D, v_{IN} offers energy E_{IND}:

$$E_{IND} = \frac{v_{IN}}{2 \pi} i_{L(DMS)} t_D = v_{IN} (\frac{2}{\pi}) i_L(PK) t_L$$

(20)

Substitute (17), (18), (19), and (20) into (16), and solve for v_S:

$$v_{SOX} = v_S \approx R_L v_O \sqrt{\frac{C_{SW}}{L_X(R_{L}t_L/4)+R_L t_L/\pi}}$$

(21)

For miniaturization, the inductor used in static operation must be the same inductor used for system wake-up (10 mH with 110 Ω ESR in this paper) to reduce system volume. In this case, v_{SOX} is 4.6 mV in simulation (4.36 mV in calculation).

C. Static Loss-Limited Output Threshold

Similarly, v_{IN}, v_{SOX}, i_L is roughly dc in static operation, and the boost converter operates in DCM. The input power P_{IN} is:

$$P_{IN} = P_S - P_{RS}$$

(22)

where P_S is the power from v_S, P_{RS} is the power burned in R_S.

$$P_S = v_S i_{RS AVG} = \frac{v_S - v_{IN}}{R_S}$$

(23)

and

$$P_{RS} = \frac{(v_S - v_{IN})^2}{R_S}$$

(24)

At v_{SOX}, v_{IN} is much lower than v_O, so drain time t_D is much less than energizing time t_E (Fig. 12). L_X's peak current $i_L(PK)$ is:

$$i_L(PK) = \frac{v_{IN}}{L_X} t_E = \frac{v_{IN}}{L_X} t_X$$

(25)

where $t_X = (t_E + t_D)$ is the time during which the boost converter draws and transfers energy. R_L's power loss P_{RL} is:

$$P_{RL} = i_{L(RMS)}^2 R_L \left(\frac{L_X}{t_{SW}}\right) = \frac{(L_X t_{SW})^{2}}{L_X \sqrt{3}} R_L$$

(26)

where $i_{L(RMS)}$ is the RMS value of i_L, f_X is the reciprocal of t_X, and f_{SW} is the switching frequency. C_{SW}'s power loss P_{CSW} is:

$$P_{CSW} = 0.5 C_{SW} v_O^2 t_{SW}$$

(27)

Again, the inductor used in static operation is the same inductor used for system wake-up. Thus, R_L is much higher than R_{MG}, and R_L's ohmic loss P_{RL} is much higher than R_{MG}'s conduction loss P_{MR}. Also, for optimized power switches, the gate-drive loss P_{MC} should be equal to the conduction loss P_{MR} [12]. Thus, P_{MR} and P_{MC} are both negligible compared to P_{RL}.

Fig. 10 plots the calculated v_{SOX} versus L_X and R_L when v_O is 1.4 V. Fig. 11 shows that the highest error is 10.99%.

Fig. 11. Static transfer-limited threshold across L_X and R_L.

FIG. 10. Static transfer-limited threshold across L_X and R_L.

Part of the controller is always on (i.e., voltage monitoring circuits), and draws steady state current $i_{Q(SS)}$. Its loss $P_{Q(SS)}$ is:

$$P_{Q(SS)} = i_{Q(SS)} v_O$$

(28)
The other part of the controller is duty-cycled (i.e., comparator CP0), and draws current iQ(X) only during tX. Its loss PLOSS is:

\[P_{LOSS}\approx P_{R} + P_{CSW} + P_{Q(X)} \]

(29)

Neglecting PMR and PMC, the total loss is approximately:

\[P_{LOSS}\approx P_{R} + P_{CSW} + P_{Q(X)} + P_{Q(X)} \]

(30)

The minimum \(P_{IN} \) such that \(P_{LOSS} \) is less than \(P_{LOSS} \) is:

\[v_{S(O)} = i_{RS(AVG)} R_S + v_{IN} = i_{S(O)} R_S + v_{IN} \]

(31)

Figure 13 plots the simulated and calculated \(v_{S(O)} \) when \(i_{Q(SS)} \) is 151 nA [13], \(i_{Q(X)} \) is 2.45 µA [14], and \(f_X \) is 16.7 kHz. \(P_{IN} \) rises when \(f_X \) climbs because the converter draws energy more frequently. Except, PCSW and PQ(X) also increase with fSW. So the lowest \(v_{S(O)} \) (called \(v_{S(O)}' \)) results at the fSW that balances \(R_L \)'s 110 Ω to \(R_L \). So with the values mentioned, theory predicts \(v_{S(O)}' \) is 63 mV and simulations show that \(v_{S(O)}' \) is 64 mV, where the highest error in Fig. 14 is 2.25%. \(v_{S(O)}' \) in [15] is lower at 20 mV because \(R_L \) in [15] is only 230 mΩ, which requires a bulkier \(L_X \).

IV. EFFECTS OF TEMPERATURE

Figure 15 plots \(v_{OH}, v_{OL}, \) and trip-point \(v_{TRIP} \) of an optimally sized inverter under different supply voltages \(V_S \) at 0°C, 27°C, and 85°C when normalized to the thermal voltage \(V_T \). When \(V_S \) is below \(V_W(F) \), \(v_{OH} \) equals \(V_T \), so the inverter cannot invert and cannot function. When \(V_S \) is higher than \(V_W(F) \), \(v_{OH} \) is higher than \(V_T \). So the inverter can trip and the oscillator can function. Simulations at these three temperatures match and show that \(V_W(F) \) is 1.69V for 1.76V. During wake-up, \(M_G \) is in sub-threshold, where current is largely the result of diffusion. So \(R_{MG} \) falls as temperature climbs, which means \(i_{LPK} \) and \(E_{LPK} \) rise. \(v_{W(F)} \) therefore drops when temperature climbs.

Since wake-up requires an \(L_X \) with a \(R_L \) that is high and climbs with temperature, static operation suffers the same \(R_L \). \(v_{S(X)} \) and \(v_{S(O)} \) therefore rise with temperature. Table I summarizes the input source voltage thresholds and their simulated temperature coefficients (TCs).

V. CONCLUSIONS

This paper theorizes the minimum input source voltage \(V_S \) for switched-inductor boost converters with and without a charged battery. Theory shows that without a charged battery, boost converters can wake with 44 mV, but not output power until \(V_S \) is 268 mV. With a charged battery, they can transfer energy with 4.6 mV, but cannot output power until \(V_S \) is 64 mV. Simulations using 0.18-µm CMOS validate this theory.

ACKNOWLEDGMENT

The authors thank Drs. A. Blanco, O. Lazzaro, and J. Morroni and Texas Instruments for their sponsorship and support.

REFERENCES

