Minimizing MOSFET Power Losses in Near-field Electromagnetic Energy-harnessing ICs

Orlando Lazaro, Graduate Student Member, IEEE
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, USA
Orlando.Lazaro@ece.gatech.edu

Gabriel Alfonso Rincón-Mora, Fellow, IEEE
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, USA
Rincon-Mora@gatech.edu

Abstract—The value of distributed sensors, embedded biomedical implants, and other wireless microsystems is the information they collect, process, and transmit over time. Unfortunately, powering such tiny devices for extended periods is a major challenge because miniaturized batteries cannot store sufficient energy and connecting wires to recharge the batteries demands considerable space overhead. Electromagnetically coupling energy to recharge these devices wirelessly is possible, but practical only if power losses are low enough for sufficient energy to reach the batteries. Because small inductors capture little energy, minimizing the power that switches dissipate to energize and de-energize an inductor is critical. This paper presents how transmitted power changes with distance and, as a result, with inductive coupling factor k_C, and shows how to use that information to minimize the power lost in the interconnecting MOSFETs. This way, a 0.18-µm near-field electromagnetic energy-harnessing IC loses on average (in simulations) 3 µW across k_C’s ranging from 0.01 to 0.1, which roughly represents 3.9% of the total power transferred.

Keywords—Inductive (Electromagnetic) Coupling, Inductive Power Transfer, Wireless Power Transfer, Contactless Charging

I. POWERING MICROSYSTEMS WIRELESSLY

The power that modern wireless microsensors require to collect, store, process, transmit, and receive data [1]–[3] taxes a tiny battery to such an extent that lifetime is relatively short [4]–[5]. Functional and size requirements are the fundamental limits in this regard, because the implied energy demands of the former exceed the imposed supply capabilities of the latter. Harvesting energy from heat, vibrations, light, and/or radiation is therefore appealing, but not yet a reality for many applications because miniaturized state-of-the-art transducers cannot convert sufficient ambient energy into the electrical domain to energize a microsystem across extended periods [6].

Coupling electromagnetic (EM) energy wirelessly from a highly energized (i.e., "hot") source across a few centimeters, as Fig. 1 illustrates, can supply more power than tiny modern-day transducers generate because hand-held products are sufficiently large to house and radiate considerably more energy. The near-field EM link established, in fact, can also sustain data transmission via backscattered signals. What is more, if power losses are sufficiently low, not only can the link energize the device but also recharge its battery so the system can continue to operate between interrogations (i.e., recharge cycles). This way, a microsensor on a carton of milk can track and report temperature history collected during transport and storage to ensure the cashier does not sell spoiled milk.

Unfortunately, geometric reductions in the receiving coil (L_S in Fig. 1) decrease the magnetic flux L_S perceives, which means EM coupling factor k_C also decreases [7]. In other words, when placed across the same distance (d_X) and compared to a larger device, a smaller L_S receives less power [8]. As a result, as transmitted near-field EM power decreases with miniaturization, the power that switches dissipate to transfer and condition power become more significant. To understand this, Sections II – IV describe how (i) a circuit harnesses coupled EM energy, (ii) switches dissipate power, and (iii) k_C affects switch losses. Section V then shows and validates (with simulations) how to size MOSFETs to minimize switch losses. Section VI ends with conclusions.

II. HARNESSING ELECTROMAGNETIC ENERGY

As Fig. 2 illustrates, an ac (primary) source v_P in the interrogator of Fig. 1 drives alternating current through a coupling capacitor C_P and into an emanating (primary) coil L_P so L_P can generate an EM field from which the receiving (secondary) coil L_S can draw power. The changing magnetic flux induces a secondary EM force voltage v_{EMF_S} in L_S that

Texas Instruments sponsors this research.
increases with coupling factor k_C (i.e., decreasing coil distance), inductances L_P and L_S, and the energy supplied by the ac source in the form of changes in current. The power conditioner then establishes the circuit paths necessary to energize (from $v_{EMF.S}$) and de-energize L_S into battery V_{BAT}.

As an example, the power-conditioning charger in Fig. 3 energizes L_S from $v_{EMF.S}$ across its positive half-cycle by engaging switches M_{END} and M_{EPD}. Once the half-cycle ends, M_{END} opens and diode-switch S_{PD} conducts i_L into V_{BAT}. At this point, v_{SW} is a diode above V_{BAT}, so comparator C_{PPD} quickly closes MPD to steer all of i_L through M_{PD} into V_{BAT}.

Fig. 3. Near-field electromagnetic energy-harnessing charger IC.

Similarly, M_{END} and M_{EPD} close through the negative half-cycle, L_S energizes to $0.5L_S$ across $V_{EMF.S}$'s peak-peak voltage and f_0 is v_P's oscillating frequency, which for maximum power transfer, should match C_P–L_S's resonant frequency.

III. MOS SWITCH LOSSES

Power conditioners consume (i) conduction power P_C, across series resistances and diodes in i_L's conduction path, (ii) gate-drive power P_G to charge and discharge gate and other parasitic capacitances, and (iii) quiescent power P_Q to operate functional circuits in the system. The circuit in Fig. 3, for example, loses P_C in M_{END}, M_{PD}, D_{PD}, M_{EPD}, M_{ND}, D_{ND}, and R_S; P_G in charging and discharging the gates of M_{END}, M_{PD}, M_{EPD}, and M_{ND}; and P_Q in C_{PD} and C_{ND}. For one, depends on how frequent the circuit switches state, which means P_C increases with f_0. Only power lost in the conduction path (P_C) depends on the energy transferred across the coils, so P_C rises with k_C. And because power switches consume P_C and P_G, P_C and P_G vary with MOS width and length dimensions W and L. As a result, minimizing power in the power stage amounts to choosing W and L values that optimally balance P_C and P_G in light of a wide-ranging k_C.

A. Conduction Losses P_C

Inductor current i_L in Fig. 3 flows to either energize or de-energize L_S. L_S's R_S, M_{END}, and M_{EPD} conduct i_L when L_S energizes across the majority of the positive and negative half-cycles (i.e., $2\tau_{EN}$ in Fig. 4a–b), so R_S and two n-type channel resistances $2R_{MN}$ consume energizing conduction power $P_{C\cdot EN}$:

$$P_{C\cdot EN} = i_L\cdot\left(\frac{R_S}{2} + R_{MN}\right),$$

where R_{MN} decreases with increasing gate width-to-length aspect ratios W/L. Because period T_O is normally $4 – 10 \mu$s and de-energizing L_S only requires a fraction of a microsecond (τ_{DE}), the de-energizing events are, for all practical purposes, instantaneous (i.e., τ_{DE} is zero) and T_O is just the sum of the two energizing times ($2\tau_{EN}$). As such, i_L can decompose into the 90° out-of-phase, Δi_L peak-peak square and sinusoidal waveforms of Fig. 4c: i_{SQ} and i_{SIN}, so $i_{LEN\cdot RMS}$ reduces to (3/8)Δi_L^2:

$$i_{LEN\cdot RMS}^2 = i_{SQR\cdot RMS}^2 + i_{SIN\cdot RMS}^2 = \left(\frac{\Delta i_L}{2}\right)^2 + \left(\frac{\Delta i_L}{\sqrt{8}}\right)^2. \tag{3}$$

The circuit has two de-energizing paths into V_{BAT}: M_{EPD}–M_{PD} for the positive half-cycle and M_{END}–M_{ND} for the negative half. Together, both paths dissipate de-energizing power $P_{C\cdot DE}$:

$$P_{C\cdot DE} = i_L\cdot\left(\frac{R_S}{2} + R_{AV} + R_{MP}\right),$$

where R_{MP} is the resistance of a p-type switch, which decreases with increasing W/L aspect ratios, and $i_L\cdot DE\cdot RMS$ is i_L's RMS current across both de-energizing times $2\tau_{DE}$, while i_L traverses rises to and falls from Δi_L in triangular fashion:

$$i_{L\cdot DE\cdot RMS}^2 = i_{TR\cdot RMS}^2 = \left(\frac{2\tau_{DE}}{T_O}\right) \cdot \left(\frac{\Delta i_L}{2}\right)^2 \cdot \left(\frac{2\tau_{DE}}{T_O}\right). \tag{5}$$

Note that, while R_S appears in both $P_{C\cdot EN}$ and $P_{C\cdot DE}$, R_S is independent of W and L values, so minimizing MOSFET losses need not account for R_S.

- page number -

ISOCC 2011
As explained in Section II, \(CP_{PD} \) and \(CP_{ND} \) require time (\(\tau_{CP} \)) to respond, so \(M_{PD} \) and \(M_{ND} \) do not close until a \(\tau_{CP} \) after \(V_{SW} \) and \(V_{SW} \) rise above \(V_{BAT} \). As a result, \(i_L \) rises \(V_{SW} \) and \(V_{SW} \) at the beginning of their respective de-energizing periods (\(\tau_{DE} \)) to the point \(CP_{PD} \) and \(CP_{ND} \) forward-bias and conduct \(i_L \) into \(V_{BAT} \) across \(\tau_{CP} \). Since \(\tau_{CP} \) is, by design, a small fraction of \(\tau_{DE} \), \(i_L \) is roughly constant across \(\tau_{CP} \) at \(|\Delta i_L| \) and diode power \(P_{CD} \) is

\[
P_{CD} = \Delta i_L V_D \left(\frac{2 \tau_{CP}}{T_o} \right) = \Delta i_D V'_{D} (\tau_{CP} f_o),
\]

where \(V_D \) is \(D_{PD} \) and \(D_{ND} \)'s averaged forward-bias voltage. Note that \(\tau_{CP} \) also includes the delay across \(M_{PD} \) and \(M_{ND} \)'s respective gate drivers, except that portion is negligibly short with respect to \(CP_{PD} \) and \(CP_{ND} \)'s delay. So, because driver delay is both weakly dependent on (i.e., proportional to the logarithm of) gate area [9] and a negligible portion of \(\tau_{CP} \), \(\tau_{CP} \) is practically independent of \(W \) and \(L \) values. Optimally sizing MOSFETs for minimum losses is therefore insensitive to \(P_{CD} \).

\section{Gate-drive Losses \(P_G \)}

Through \(T_{DP} \), each MOSFET in Fig. 3 opens and closes once, so the power the drivers draw from \(V_{BAT} \) to charge their collective gate-load capacitances \(C_G \) across \(V_{BAT} \) is

\[
P_G = C_G V_{D} i_L f_o = 2 W_N L_N + 2 W_P L_P \frac{K_{V_{EMF}} V_{BAT}}{f_o} i_L f_o,
\]

where the \(n \) - and \(p \)-type FETs that comprise \(C_G \) have aspect ratios \(W_N / L_N \) and \(W_P / L_P \). Charging stray capacitances at \(V_{SW} \) also requires energy, which \(L_S \) sources almost losslessly (in resonant fashion). Later, \(L_S \) similarly absorbs the energy supplied to discharge these capacitances. In this process, \(R_S \) is the only component that consumes power, and because these capacitances are relatively small and their energy is correspondingly low, a small \(R_S \) loses negligible power with respect to \(P_G \). Note that charging and discharging this way allow FETs to switch with close to zero voltages across their drain–source terminals, which is why FETs in the circuit incur insignificant \(i_D^2 V_D \) overlap losses.

\section{Effects of Inductive Coupling Factor \(k_C \)}

Since conduction losses \(P_C \), as Section III demonstrates, increase with \(|\Delta i_L| \), which in turn rises with transmitted power \(P_T \) and, as a result, with \(k_C \), balancing \(P_C \) and gate-drive losses \(P_G \) in the FETs must account for \(k_C \). To relate them, consider that, with \(P_T \), \(V_{EMF}^P \) supplies the power \(L_S \) receives as \(P_L \):

\[
P_L = E_s (2 f_o) = 0.5 L_S |\Delta i_L| (2 f_o),
\]

plus the conduction power lost through the energizing process \(P_{CEN} \). \(P_L \) and \(P_{CEN} \)'s dependence on \(|\Delta i_L| \) means \(P_L \) is proportional to \(|\Delta i_L| \) as \(P_T \) would be to \(V_{EMF(SRMS)}^2 \) across an equivalent resistance \(R_{EQ} \) (from Fig. 5):

\[
P_T = P_L + P_{CEN} = \frac{V_{EMF(SRMS)}^2}{R_{EQ}},
\]

where \(V_{EMF(SRMS)}^2 \), as a sinusoid, is

\[
V_{EMF(SRMS)}^2 = \left(\frac{\Delta V_{EMF}}{\sqrt{8}} \right)^2 = \left(\frac{\Delta i_L L_S}{\sqrt{8}} \right)^2 = \left(\frac{2 \pi f_o |\Delta i_L|}{\sqrt{8}} \right)^2
\]

and \(P_T \) combines to

\[
P_T = P_L + P_{CEN} = \left(\frac{1}{2} \right) L_S |\Delta i_L| (2 f_o) + \left(\frac{3}{8} \right) (R_s + 2 R_{MN}) |\Delta i_L|^2, \tag{11}
\]

so \(R_{EQ} \) reduces to

\[
R_{EQ} = \frac{V_{EMF(SRMS)}^2}{P_T} = \frac{(2 \pi f_o L_S)^2}{8 L_S f_o^4 + 3 (R_s + 2 R_{MN})}. \tag{12}
\]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig5.png}
\caption{Circuit with equivalent secondary load resistance \(R_{EQ} \).}
\end{figure}

Because \(C_P \) and \(L_P \), by design, resonate at \(f_o \), their impedances cancel and primary source voltage \(v_p \) drops entirely across source (primary) resistance \(R_P \) and reflected equivalent load resistance \(R_{EQ} \):

\[
R_{EQ} = \frac{v_{EMF(P)} \Delta V_{EMF}}{i_p} = k_L^2 L_P L_S \frac{(2 \pi f_o)^2}{R_{EQ}},
\]

which means

\[
v_{EMF(S)} = k_L \sqrt{L_P L_S} \left(\frac{\Delta i_L}{R_{P} + R_{EQ}} \right) s \tag{14}
\]

and

\[
|\Delta i_L| = \frac{\Delta V_{EMF}}{2 \pi f_o L_S} = \frac{k_c}{\sqrt{L_P L_S}} \frac{\Delta d}{R_P + R_{EQ}}. \tag{15}
\]

where \(s \) is \(j(2 \pi f_o) \) because, even if \(v_p \) were to source power at frequencies other than \(f_o \), \(C_P \) and \(L_P \) would filter that energy, which is why no other power than what \(f_o \) carries reaches \(L_S \). So, substituting this \(\Delta i_L \) back in \(P_{CEN} \) and \(P_{CDE} \) relate these losses to \(k_c \) and since \(L_S \) supplies de-energizing losses \(P_{CDE} \) and \(P_{CDD} \), \(P_L \) already includes \(P_{CDE} \) and \(P_{CDD} \). \(P_T \) does not account for gate-drive losses \(P_{G} \), however, because \(V_{BAT} \) (not \(L_S \)) supplies \(P_G \) to the gate drivers.

\section{Minimizing MOSFET Losses}

As in most switching converters, \(P_T \) and \(P_G \) rise with longer gate lengths because both MOS channel resistance \(R_M \) and gate capacitance \(C_G \) increase. Accordingly, selecting the shortest possible \(L \) that the process and application allow (i.e., \(L_{MIN} \)) is usually the first step in reducing switch losses. Since wider gates lower \(R_M \) (and therefore \(P_C \)) and raise \(C_G \) (and \(P_G \)), the next step in the design process is selecting optimum width dimensions (i.e., \(W_{OPT} \)) with which to minimize \(P_C \) and \(P_G \)'s collective sum. However, just as \(P_C \) changes across loads (i.e., \(\Delta i_L \)) in typical regulators, \(P_G \) varies across \(k_C \) (via \(i_L \) values) in EM-harnessing chargers, which means \(W_{OPT} \) changes with \(k_C \).

Unfortunately, while \(d_k \) is mostly short and \(k_C \) is therefore consistently high in wirelessly powered biomedical implants [3], \(d_k \) is not for most other EM-powered microsystems [1]. As a result, the ideal solution is for MOS widths to vary dynamically according to \(k_C \). However, sensing \(k_C \) (via \(i_L \), for example) and changing widths (by selecting one of several transistor options), require additional power, counteracting and, in
microsystems, oftentimes overwhelming the benefits of W_{OPT}. The next best option is to use the most frequent value of k_C to set gate widths, but the approximation is only reasonable with narrow probability distributions, which most applications do not exhibit. A more practical approach is to assume a uniform distribution and choose a width W_{OPT} that optimally minimizes the average power lost in the switches (P_{AVG}) across k_C:

$$P_{AVG} = \frac{1}{k_{C(MIN)}} \int_{k_{C(MIN)}}^{k_{C(MAX)}} P_{FET} PDF_{FET} dk_C = \frac{1}{\Delta k_C} \int_{k_{C(MIN)}}^{k_{C(MAX)}} P_{FET} dk_C,$$ \hfill (16)

where P_{FET} represents switch losses and PDF_{FET} the corresponding probability-density function, which for a uniform distribution, is constant. When balanced this way, FETs are wider than optimal (i.e., P_G exceeds P_C) when k_C is low, optimal (i.e., P_C equals P_G) at mid-range, and narrower than optimal (i.e., P_C exceeds P_G) when k_C is high, as Fig. 6 shows. In the case of biomedical implants, where k_C is higher more often, widths should favor the high-coupling region, so P_G’s crossing point in Fig. 6 should shift to the right.

Since only one n- and one p-type transistor conduct at a time, minimizing P_{AVG} reduces to simultaneously setting P_{AVG}’s two first partial derivatives with respect to W_N and W_P to zero:

$$\frac{\partial P_{AVG}}{\partial W_N} = 0 = \frac{\partial P_{AVG}}{\partial W_P}.$$ \hfill (17)

Assuming k_C spans from 0.01 to 0.1 and using 0.18-µm FETs (i.e., L_{MIN} is 0.18 µm) to harness energy from a 4513TC Coilcraft 400-µH secondary coil (L_s) with 9.66 Ω of series resistance (R_s) that draws power from a ZXC Coilcraft 14.8-mH primary coil (L_p) to ultimately charge a 0.9 – 1.6-V NiCd from a 0.5-Vpp ac source at 125 kHz (v_p), P_{AVG} is lowest when R_{MIN} is 1.02 Ω and R_{MP} is 13.2 Ω, which happens when W_N is 1108 µm and W_P is 368 µm, as Fig. 7 shows. At this point, P_{AVG} is 2.97 µW: 3.91% of the total power transferred (at 3 µW). Ensuring these losses are low is important because microsystems couple only a diminutive fraction of the EM power sourced. Plus, maximizing the energy an embedded battery receives allows the microsystem to function longer between recharge cycles, when there is no EM source.

VI. CONCLUSIONS

As in typical switching converters, minimizing switch losses in near-field EM-harnessing integrated circuits (ICs) reduces to selecting optimal gate widths that balance conduction and gate-drive losses. Unfortunately, this balancing point changes with the distance between the coupling coils and, as a result, with inductive coupling factor k_C. Choosing optimal widths must therefore account for k_C and k_C’s probability distribution across time. This paper shows how P_C in EM coupling switches depends on k_C and how considering k_C’s probability distribution keeps average losses across 0.01 and 0.1 k_C values in 0.18-µm MOSFETs below 4% of the total power transferred.

REFERENCES

