Ripple Suppression of On-Chip Switched-Inductor Power Supplies

Devon Janke, *Graduate Student Member, IEEE*, and Gabriel A. Rincón-Mora, *Fellow, IEEE* School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 30332-0250 U.S.A. E-Mail: djanke3@gatech.edu and Rincon-Mora@gatech.edu

Abstract—Emerging applications demand compact, batterypowered, and highly functional microsystems that require onchip integration, low average power, and high peak-to-average power ratios. Switched inductors are popular power supplies because they are power efficient. Switching a power inductor, however, generates a nonlinear current ripple that is often difficult to tolerate and manage. The problem is more severe with on-chip nH inductors and pF capacitors. This paper explores how switching power supplies can manage and reduce this ripple. Although multiphase and filter suppressors help, analog cancellation can be $38 \times$ to $77 \times$ more effective, but also less power efficient and $23 \times$ to $55 \times$ more sensitive to mismatch from drift.

Keywords—Monolithic power supplies, on-chip integration, switched inductors, dc-dc converters, ripple suppressors.

I. ON-CHIP POWER SUPPLIES

Emerging wireless microsensors and other micro-scale applications demand more integration and functionality than ever before. This is because fewer board components, fewer pins, and lower board complexity reduce volume, cost, and risk [1]–[3]. But devices are so small and functionality is so high that onboard batteries drain and deplete quickly.

With so little energy, on-chip power supplies cannot afford to lose much power. Linear regulators are compact and free of switching noise, but not very efficient. Switched capacitors (SC) are more efficient [4], but not as much as switched inductors (SL) because, with fewer switches, SL's have less gate capacitance to charge [5]. The current ripples that SL's produce, however, burn power and generate noise [6]–[8].

In the basic buck converter shown in Fig. 1, for example, switch S_I energizes and S_G drains inductor L_X from input v_{IN} to output v_O in alternating phases of the switching period t_{SW}. L_X's current i_O therefore rises in Fig. 2 across the energizing period t_E that S_I establishes and falls across the drain time t_D that S_G sets. Since the load i_{LD} normally draws i_O's average i_{O(AVG)}, the output capacitor C_O sinks i_O's ripple Δi_O . This means, C_O's equivalent series resistance R_{CO} burns $\Delta i_{O(RMS)}^2 R_{CO}$ power, and together with C_O, produce the voltage ripple Δv_O shown in v_O.

When integrated on chip, L_X and C_O can be 50 nH and 500 pF [9]–[18]. So when t_{SW} , v_{IN} , v_O , and R_{LD} are 100 ns, 4 V, 1 V, and 2 Ω and R_{CO} is negligibly low, Δi_O is so high that L_X

conducts discontinuously and Δv_0 is excessively noisy. Increasing the switching frequency f_{SW} to 100 MHz reduces Δi_0 and Δv_0 to 150 mA and 220 mV. Switching S_I and S_G at 100 MHz, however, requires more gate-drive power [5]. Plus, 220 mV's ±11% ripple about 1 V is too noisy for modern applications. Increasing C₀ to 5 nF, which is possible on chip, but typically impractical, reduces Δv_0 further to the 38-mV (±1.5%) ripple shown in Fig. 2, which is more acceptable.

Fig. 2. Current and voltage waveforms of the basic buck at 100 MHz.

This paper explores how to suppress these ripples in switched-inductor supplies so that both L_X and C_O can be on chip and switch at practicable frequencies. To this end, Sections II–V describe and compare ripple suppressors. Section VI then draws and summarizes relevant conclusions.

II. MULTIPHASE CANCELLATION

A. Operation

Since multiphase converters feed out-of-phase inductor currents into one output, current ripples tend to cancel [19]. Cancellation is nearly perfect when feeding two 50% duty-cycled phases, which only happens when v_0 is half of v_{IN} in bucks [20]. Cancellation deteriorates as duty cycle d_E deviates.

A replica, but complementary-phased inductor L_R , however, can produce an equal, but opposite-phased ripple current that, when coupled into v_0 like C_C in Fig. 3 shows, can cancel the ripple of a switched power inductor L_X [2], [21]– [22]. For perfect cancellation, L_R must drain with the same voltage that L_X energizes, and *vice versa*. Plus, C_C must not alter the ripple that L_X produces and injects into v_0 .

This works because L_R and L_X are dc shorts, v_{SWX} 's average $v_{SWX(AVG)}$ and v_O are duty-cycled fractions of v_{IN} : $v_{IN}d_E$, and v_{SWR} 's average $v_{SWR(AVG)}$ and v_C are complementary fractions: $v_{IN}(1 - d_E)$. So as L_X energizes with $v_{IN} - v_{IN}d_E$, L_R drains with $-(1 - d_E)v_{IN}$ or $-v_{IN} + d_Ev_{IN}$. And L_X drains with $-v_{IN}d_E$ as L_R energizes with $v_{IN} - (1 - d_E)v_{IN}$ or d_Ev_{IN} . This way, when C_C keeps v_C steady at $v_{SWR(AVG)}$, the current ripples cancel.

In the case of on-chip inductors, L_X and L_R are very low, so their current ripples are very high. Although this does not affect their cancellation, L_X 's and L_R 's series resistances R_{LX} and R_{LR} can burn substantial power. The purpose of the magnetic coupling between L_X and L_R is to *couple* voltages that oppose. That way, with lower effective voltages across the *intrinsic* inductors, their currents ripple less, and as a result, burn less RMS power [21]–[23]. Even if the coupling factor k_C is low at 10%, the effect is to reduce the ripple. Since L_X and L_R are both on the same chip, coupling them is possible [21].

B. Sensitivity

As long as inductor voltages and inductances match, cancellation is perfect. But for that, v_C must be as steady as its complementary counterpart v_O , which without ripple current into C_O , hardly ripples. So cancellation is perfect only when C_C is nearly infinite. This is why the current ripple Δi_O in Fig. 4 is never zero and falls with higher C_C 's.

Fig. 4. Multiphase and filter sensitivity to coupling and holding capacitance.

Perfect cancellation also presupposes L_X and L_R match perfectly, which is not true in practice. $\pm 5\%$ mismatch when C_C is 100 µF, for example, produces a 22-mA ripple Δi_0 , as Fig. 5 shows. Interestingly, this mismatch can oppose the effect of a lower C_C . So a 20% higher L_R can reduce the 110-mA ripple that an on-chip 500-pF C_C produces in Fig. 4 to 23 mA.

III. SHUNT-FILTERED REMOVAL

A. Operation

When tuned, filters can suppress ripples with less inductance and capacitance than the buck in Fig. 1 can. The series LC resonator in [24], for example, phase-shifts and cycles back some of the ripple energy that C_0 would otherwise receive. Unfortunately, the resonator slows the response of the power supply [25]–[26]. Plus, the resonator's sinusoidal current cannot completely cancel L_X 's triangular ripple.

The shunt filter in Fig. 6, however, can cancel the ripple [27]. For this, L_S drops a voltage-divided fraction of the switching voltage v_{SW} that matches the coupled voltage that L_{XO} drops. So the opposing magnetic action between L_X and L_{XO} couples a voltage into L_{XO} that cancels the voltage that L_S imposes. This way, L_{XO} outputs a non-rippling current i_O .

Fig. 6. Magnetically-coupled shunt-filtered buck.

 L_s essentially shunts L_x 's ripple current and L_{xO} steers L_x 's average dc component into v_O . For L_s to conduct as much ripple as L_x , L_s should match L_x 's coupled reflection $k_C L_x$ in L_{xO} [28]. This way, L_s drops a full k_C fraction of L_x 's voltage to sink as much current ripple as L_x . [29] applies similar concepts, but requires another capacitor.

B. Sensitivity

Ripple removal is perfect when the voltage v_H across the holding capacitor C_H is perfectly steady. But since on-chip capacitance is so low, v_H fluctuates and produces a variation in the current that L_S shunts, and as a result, the current that L_{XO} outputs. This is why L_{XO} 's current ripple Δi_O in Fig. 4 rises from 190 μ A to 240 mA when C_C falls from 100 nF to 100 pF.

Inductor mismatch also produces an imbalance that keeps L_{XO} 's voltages from cancelling. $\pm 5\%$ mismatch when C_C is 100 μ F, for example, produces a 4-mA ripple, like Fig. 7 shows. This imbalance, however, can offset the effect of a lower C_H . So a 49% higher L_S can reduce the 51-mA ripple that an on-chip 500-pF C_C produces in Fig. 4 to 9.9 mA.

IV. ANALOG CANCELLATION

A. Operation

Another way to cancel current ripple is to construct a complementary, inductor-like ripple with analog circuits [8]. A feedback loop, for example, can sense C_0 's voltage ripple and output a current that opposes that ripple [30]. This reduces the ripple, but not below the offset that the loop's delay allows.

Feed-forwarding an inductor-like ripple is better because a tunable delay block can eliminate the phase difference between the two paths. For this to work, the circuit must predict (rather than sense) the current ripple. But since the voltages that establish the ripple (v_{IN} and v_O) are available, and inductance is largely static, predicting the ripple is possible.

In Fig. 8, for example, the digital signal v_{SW}' fed to G_I produces a duty-cycled current into C_I that generates a triangular voltage ripple v_I that G_O then converts into a current i_{GO} [31]. Since i_{GO} 's duty cycle matches that of L_X 's current i_{LX} and G_O inverts the ripple, i_{GO} can cancel i_{LX} 's ripple Δi_{LX} . The cancellation is perfect when i_{GO} 's amplitude and phase match Δi_{LX} 's, which happens when G_I and G_O 's gain and delay match L_X 's. [6]–[7] and [25]–[26] similarly feed-forward signals that cancel i_{LX} 's ripple, but with large transformers.

Fig. 8. Analog feed-forward cancellation of the basic buck

 v_{SW}' swings between v_{IN} and ground like v_{SW} . Since G_I 's inverting input-reference v_R matches v_O 's target, G_I 's positive and negative input voltages $v_{IN} - v_R$ and $-v_R$ match L_X 's energizing and drain voltages $v_{IN} - v_O$ and $-v_O$. This way, G_I processes the same voltage v_L that S_I and S_G impress across L_X . So when G_IG_O/C_I matches $1/L_X$, i_{GO} is equal, but opposite Δi_{LX} :

$$i_{GO} = -\frac{v_L G_I G_O}{s C_1} \equiv -\Delta i_{LX} = -\frac{v_L}{s L_X}.$$
 (1)

Since G_I and G_O delay i_{GO} 's feed-forward action, the purpose of the delay block t_{DLY} is to delay L_X 's v_{SW} by the same time.

B. Sensitivity

Cancellation is perfect when G_I and G_O 's gain and delay match L_X 's. Of these, cancellation is more sensitive to delay mismatch. For example, $\pm 5\%$ delay mismatch (from Fig. 9) produces a 15× greater ripple Δi_O than gain error. Cancellation is so sensitive to delay that mismatches over $\pm 10\%$ output more ripple than the basic buck. In other words, the benefits of suppression disappear beyond $\pm 10\%$. This is why tuning t_{DLY} is necessary. Although tracking L_X 's drift over time and temperature also helps, the effect of this gain error is lower.

IV. COMPARISON

A. Load

Although the principle aim of a power supply is to feed and satisfy a load, the operational objective of the control loop is to regulate the output voltage v_0 . So what ultimately matters most is voltage ripple Δv_0 . Output current ripple Δi_0 is critical in this respect because Δi_0 into output capacitance C_0 produces Δv_0 . The load is also important because it can alter how much current C_0 receives and how much v_0 ripples. Since v_0 ripples in practice, loading the output with a resistive load R_{LD} introduces a load ripple Δi_{LD} or $\Delta v_0/R_{LD}$. Fortunately, this current ripple draws more current when v_0 rises and less current otherwise. So the net effect is to oppose v_0 's unloaded ripple. This is why Δv_0 in Fig. 10 is lower with heavier resistive loads (i.e., lower R_{LD} 's). The benefit of R_{LD} , however, disappears when R_{LD} surpasses 1 Ω . In other words, Δi_0 is so much greater than Δi_{LD} at and past this point that Δi_{LD} produces negligible variations in C_0 's current and Δv_0 .

B. Integration

With 50 nH of total inductance L_{TOT} and 5 nF of total capacitance C_{TOT} , analog cancellation can suppress the current ripple of a basic buck the most by 65 dB, whereas multiphase and filtered schemes reduce the ripple by, at most, 28–34 dB. This is, in part, because multiphase and filtered circuits share L_{TOT} , so their power inductor L_x is only a fraction of L_{TOT} . As inductance climbs, however, like Fig. 11 illustrates, multiphase and filtered suppression improve more than analog cancellation does. So much so that suppression is nearly the same for all three with 1 μ H. In other words, analog cancellation is more effective than the others when total inductance is lower, as in the case of on-chip inductors.

When L_{TOT} falls below 5 nH, L_X 's current i_{LX} fluctuates so much that i_{LX} is no longer triangular like in Fig. 2. Below 5 nH, L_X conducts current discontinuously (in discontinous conduction mode: DCM). With so much nonlinearity, the cancelling effects of the multiphase circuit vanish. The analog circuit also suffers, but gradually. So even with 1 nH, the ripple is 41 dB below the basic buck's. Although the filter does not suffer, the ripple is 21 dB higher than the analog's 1-nH level. Analog cancellation still works well in DCM because the circuit reconstructs the cancellation current from the same operating conditions that produce L_X 's DCM ripple.

Since ripple suppressors distribute total capacitance C_{TOT} differently, on-chip integration of capacitance does not limit the schemes in the same way. Multiphase and filter strategies, for example, rely on coupling and holding capacitors C_C and C_H to suppress Δi_O . Ripple suppression is highest when C_O and C_C or C_H share C_{TOT} equally. This way, raising C_C and C_H by 40 dB from 250 pF to 25 nF suppresses Δi_O by nearly the same amount: 37–40 dB, and raising C_O by 40 dB from 250 pF to 25

nF reduces Δi_0 's impact on Δv_0 by another 40 dB or so. So combined, Δv_0 in Fig. 12 is 73–78 dB lower.

 C_0 is the only power capacitor in the analog scheme, and as a result, the sole beneficiary of additional C_{TOT} . Since C_0 does not alter the cancellation current, increasing C_0 has little effect on Δi_0 . Doing so, however, still reduces Δi_0 's impact on Δv_0 , so raising C_0 by 40 dB from 500 pF to 50 nF suppresses Δv_0 in Fig. 12 by 34 dB. The improvement is so much lower than the multiphase and filter schemes that suppression is the same for all three at 100 nF. In other words, analog cancellation is more effective when capacitance is lower: with on-chip capacitors.

With 50 nF of off-chip capacitance, the multiphase and filter strategies suppress the basic buck's Δi_0 by 48–53 dB and Δv_0 by 51–55 dB. But when constrained to 500 pF, the suppression falls to 6.8–8.7 dB, like Table I shows. Since Δi_0 reduction in the analog scheme is much more effective and at the same time also indepedent of C_0 , Δi_0 and Δv_0 are 65 and 62–63 dB lower than the basic buck's, irrespective of C_0 . In other words, on-chip integration reduces the effectiveness of the multiphase and filter circuits, but not that of the analog's.

TABLE I: PERFORMANCE SUMMARY								
	Buck		Multiphase		Filter		Analog	
	Δi_0	Δv_0	Δi_0	Δv_0	Δi_0	Δv_0	Δi_0	Δv_0
	[mA]	[mV]	[mA]	[mV]	[mA]	[mV]	[mA]	[mV]
Nominal	151	37.4	6.15	1.13	3.05	0.57	0.08	0.03
+5% Mismatch			26.9	14.0	5.47	2.01	7.14*	1.78^{*}
-5% Mismatch	-	_	21.0	15.6	4.54	3.28	7.95^{*}	1.97^{*}
+20% L _{TOT}	125	31.0	4.26	1.12	2.04	0.51	25.0	6.23
-20% L _{tot}	189	46.7	8.20	5.16	3.71	2.25	37.5	9.39
$L_{TOT} = 50 \text{ nH}$	151	37.4	3.46	1.66	1.7	0.86	0.08	0.03
$L_{TOT} = 5 \ \mu H$	0.50	0.37	0.001	0.0007	0.001	0.005	0.0008	0.0003
$C_{TOT} = 500 \text{ pF}$	153	219	58.3	80.6	25.7	32.1	0.09	0.16
$C_{TOT} = 50 \text{ nF}$	149	3.63	0.60	0.01	0.35	0.01	0.08	0.003
$R_{LD} = 100 \text{ m}\Omega$	150	12.7	3.51	0.29	1.71	0.16	0.08	0.008
$R_{LD} = 50 \Omega$	151	37.7	3.37	1.78	1.69	0.86	0.08	0.03
Additional Components	_		S_{IR} , S_{GR} , L_R , and C_C		$L_{XO}, L_S,$ and C_H		G _I , C _I , and G _O	
*Tuned delay with $\pm 5\%$ drift in inductance or $\pm 5\%$ mismatch in gain								

Tuned delay with $\pm 5\%$ drift in inductance or $\pm 5\%$ mismatch in gain.

Analog cancellation is so effective that 2-MHz operation is possible with practical on-chip components. i_0 in Fig. 13, for example, ripples across 9.6 mA with 50 nH and v_0 ripples across 19 mV with 500 pF. Current ripple is so high in the multiphase and filtered circuits that the power inductor cannot conduct continuously (in continuous conduction mode: CCM).

Fig. 13. Current and voltage waveforms with analog cancellation at 2 MHz.

C. Sensitivity

All schemes ultimately rely on matching components to cancel the current ripple. Unfortunately, components do not match perfectly. In the analog circuit, $\pm 5\%$ gain mismatch or $\pm 5\%$ drift in inductance magnifies Δi_0 by 99× and Δv_0 by 66× (in Fig. 9). $\pm 5\%$ inductance mismatch in the multiphase scheme has less impact: Δi_0 climbs up to 4.4× and Δv_0 up to 14×. The effect is even lower in the shunt filter with $\pm 5\%$ mismatch in inductance: Δi_0 rises up to 1.8× and Δv_0 up to 5.8×.

 $\pm 1\%$ mismatch in delay in the analog scheme amplifies Δi_0 by 200× and Δv_0 by 190×. With this mismatch, current and voltage ripples Δi_0 and Δv_0 are up to 12× greater than in the filter. The benefits of analog cancellation over the filter therefore disappear with $\pm 1\%$ delay mismatch, like Fig. 9 shows. This is why tuning delay (by for example, adjusting capacitance or the number of inverters in a chain of inverters) is a requirement for the analog scheme.

D. Power Consumption

Switches require gate-drive power and equivalent series resistances in power inductors and capacitors burn ohmic power. Relative to the basic buck, the shunt filter uses three additional passive components: L_{XO} , L_S , and C_H , but no additional switches. Although the multiphase circuit uses one less: L_R and C_C , two more switches are necessary: S_{IR} and S_{GR} . So of these, multiphase cancellation consumes more power.

Analog cancellation does not require additional power switches or passive components (because C_I does not conduct much current and is therefore small). Output transconductor G_O , however, conducts as much ripple current as the power inductor L_X , so G_O consumes analog power. This power is significant because G_O supplies current across v_{IN} and v_O and sinks current across v_O and ground. So the transistors that carry this current drop $v_{IN} - v_O$ and v_O , which are substantially higher voltages than power switches would. Analog cancellation can therefore require more power than the other two schemes.

V. CONCLUSIONS

Analog cancellation is $38 \times$ more effective in suppressing current ripple Δi_0 than the shunt filter and 77× more effective than multiphase cancellation. Unfortunately, the analog circuit is also $55 \times$ and $23 \times$ more sensitive to $\pm 5\%$ gain mismatch and drift. So without tracking inductance, the shunt filter is the most effective. However, when constrained to 50 nH and 500 pF, Δi_0 is so great in the shunt filter that operation at low frequencies is not possible. The analog scheme is the only one that can keep voltage ripple within ±20 mV at 2 MHz with onchip components (50 nH and 500 pF), albeit at the expense of analog power. Irrespective of the means and values used (for capacitance, inductance, and frequency), as long as the design is optimal for those values, ripple noise and power efficiency ultimately deteriorate with integration. While analog cancellation favors noise reduction the most, shunt-filtering the current ripple balances noise and power better.

ACKNOWLEDGMENT

The authors thank Bryan Legates, Gregory Hughes, David Megaw, and Analog Devices for their advice and support.

REFERENCES

- S. Abedinpour, M. Trivedi, and K. Shenai, "DC-DC power converter for monolithic implementation," *World Congress on Industrial Applications of Electrical Energy*, vol. 4, pp. 2471-5, Oct. 2000.
- [2] P.-H. Lan, Y.-J. Kuo, and P.-C. Huang, "An area-efficient CMOS switching converter with on-chip LC filter using feedforward ripple cancellation technique," *International Symposium on VLSI Design*, *Automation and Test*, Apr. 2012.
- [3] S. Musunuri, P.L. Chapman, Z. Jun, and L. Chang, "Design issues for monolithic DC-DC converters," *IEEE Transactions on Power Electronics*, vol. 20, no. 3, pp. 639-49, May 2005.
- [4] G. Villar-Pique, H.J. Bergveld, and E. Alarcon, "Survey and benchmark of fully integrated switching power converters: Switchedcapacitor versus inductive approach," *IEEE Transactions on Power Electronics*, vol. 28, no. 9, pp. 4156-4167, Sep. 2013.
- [5] G.A. Rincón-Mora, "Powering Microsystems with Ambient Energy," in *Energy Harvesting With Functional Materials and Microsystems*, M. Bhaskaran, S. Sriram, K. Iniewski, Eds. Boca Raton: CRC Press, LLC, 2014, pp.2-30.
- [6] P. Cantillon-Murphy, T.C. Neugebauer, C. Brasca, and D.J. Perreault, "An active ripple filtering technique for improving common-mode inductor performance," *IEEE Power Electronics Letters*, vol. 2, no. 2, pp. 45-50, Jun. 2004.
- [7] D.C. Hamill and T. Ong Tiam, "Analysis and design of an active ripple filter for DC-DC applications," *IEEE Applied Power Electronics Conference and Exposition*, vol.1, pp. 267-73, Mar. 1995.
- [8] L.E. LaWhite and M.F. Schlecht, "Active filters for 1 MHz power circuits with strict input/output ripple requirements," *IEEE Transactions on Power Electronics*, vol. PE-2, no. 4, pp. 282-90, Oct. 1987.
- [9] S.C.O. Mathuna, T. O'Donnell, N. Wang, and K. Rinne, "Magnetics on silicon: an enabling technology for power supply on chip," *IEEE Transactions on Power Electronics*, vol. 20, no. 3, pp. 585-592, May 2005.
- [10] C.O. Mathuna, N. Wang, S. Kulkarni, and S. Roy, "Review of integrated magnetics for Power Supply on Chip (PwrSoC)," *IEEE Transactions on Power Electronics*, vol. 27, no. 11, pp. 4799-4816, Jun. 2012.
- [11] C.H. Ahn and M.G. Allen, "A comparison of two micromachined inductors (bar- and meander-type) for fully integrated boost DC/DC power converters," *IEEE Transactions on Power Electronics*, vol. 11, no. 2, pp. 239-45, Mar. 1996.
- [12] E.J. Brandon, E. Wesseling, V. White, C. Ramsey, L. Del Castillo, and U. Lieneweg, "Fabrication and characterization of microinductors for distributed power converters," *IEEE Transactions on Magnetics*, vol. 39, no. 4, pp. 2049-56, Jul. 2003.
- [13] D.V. Harburg, "Micro-fabricated racetrack inductors with thin-film magnetic cores for on-chip power conversion," Ph.D. dissertation, Dartmouth College, 2013.
- [14] B. Orlando, R. Hida, R. Cuchet, M. Audoin, B. Viala, D. Pellissier, X. Gagnard, and P. Ancey, "Low resistance integrated toroidal inductors for power management," *IEEE International Magnetics Conference*, p. 60, May 2006.
- [15] J.Y. Park and M.G. Allen, "A comparison of micromachined inductors with different magnetic core materials," *46th Electronic Components* and Technology Conference, pp. 375-81, May 1996.
- [16] J.F. Rohan, D. P. Casey, J. O'Brien, M. Hegarty, A.M. Kelleher, N. Wang, B. Jamieson, F. Waldron, S. Kulkarni, S. Roy, and S. C. O'Mathuna, "Integrated microinductors on semiconductor substrates

for power supply on chip," *ECS Transactions*, vol. 41, pp. 341-347, Oct. 2011.

- [17] L. Yu, D.-H. Weon, J.-I. Kim, and S. Mohammadi, "Integrated highinductance three-dimensional toroidal inductors," *Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics*, vol. 28, no. 5, pp. 903-907, Sep. 2010.
- [18] F. Xiangming, W. Rongxiang, P. Lulu, and J.K.O. Sin, "A novel silicon-embedded toroidal power inductor with magnetic core," *IEEE Electron Device Letters*, vol. 34, no. 2, pp. 292-4, Feb. 2013.
- [19] E.A. Burton, G. Schrom, F. Paillet, J. Douglas, W.J. Lambert, K. Radhakrishnan, and M.J. Hill, "FIVR - Fully integrated voltage regulators on 4th generation Intel Core SoCs," 29th Annual IEEE Applied Power Electronics Conference and Exposition, pp. 432-439, Mar. 2014.
- [20] P.A. Dahono, S. Riyadi, A. Mudawari, and Y. Haroen, "Output ripple analysis of multiphase DC-DC converters," *Third IEEE International Conference on Power Electronics and Drive Systems*, vol. 2, pp. 626-31, July 1999.
- [21] J. Wibben and R. Harjani, "A high-efficiency DC-DC converter using 2 nH integrated inductors," *IEEE Journal of Solid-State Circuits*, vol. 43, no. 4, pp. 844-54, Apr. 2008.
- [22] R. Wu and J.K.O. Sin, "High-efficiency silicon-embedded coreless coupled inductors for power supply on chip applications," *IEEE Transactions on Power Electronics*, vol. 27, no. 11, pp. 4781-4787, Nov. 2012.
- [23] Pit-Leong Wong, Peng Xu, P. Yang and F.C. Lee, "Performance improvements of interleaving VRMs with coupling inductors," *IEEE Transactions on Power Electronics*, vol. 16, no. 4, pp. 499-507, Jul. 2001.
- [24] E. Alarcon, G. Villar, S. Ferrandez, F. Guinjoan, and A. Poveda, "Ripple-reduction tuned filtering switching power converter topology," *IEEE 35th Annual Power Electronics Specialists Conference*, vol. 5, pp. 3739-44, Jun. 2004.
- [25] P. Midya and P.T. Krein, "Feed-forward active filter for output ripple cancellation," *International Journal of Electronics*, vol. 77, no. 5, pp. 805-18, Nov. 1994.
- [26] Z. Mingjuan, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G. Kassakian, "Design and evaluation of Feedforward Active ripple filters," *IEEE Transactions on Power Electronics*, vol. 20, no. 2, pp. 276-85, Mar. 2005.
- [27] S.S. Nag, S. Mishra, and A. Joshi, "A passive filter building block for input or output current ripple cancellation in a power converter," *IEEE Journal of Emerging and Selected Topics in Power Electronics*, vol. 4, no. 2, pp. 564-575, Jun. 2016.
- [28] H.-G. Choi and J.-I. Ha, "Design technique of coupled inductor filter for suppressing switching ripples in PWM converters," 6th International Conference on Power Electronics Systems and Applications, pp. 1-4, December 2015.
- [29] C.-M. Lai and Y.-J. Lin, "Passive ripple mirror circuit and its application in pulse-width modulated DC-DC converters," 2nd IEEE International Future Energy Electronics Conference, pp. 1-3, Nov. 2015.
- [30] S. Dietrich, L. Liao, F. Vanselow, R. Wunderlich, and S. Heinen, "A 1mV voltage ripple 0.97mm2 fully integrated low-power hybrid buck converter," *39th European Solid-State Circuits Conference*, pp. 395-398, Sep. 2013.
- [31] L.A. Milner and G.A. Rincón-Mora, "A feedforward 10x CMOS current-ripple suppressor for switching power supplies," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 57, no. 5, pp. 374-378, May 2010.