Harvesting Circuits for Miniaturized Photovoltaic Cells

Rajiv Damodaran Prabha, Gabriel A. Rincón-Mora, and Suhwan Kim Georgia Tech Analog, Power, and Energy IC Research {rajiv.damodaran, rincon-mora, suhwan}@gatech.edu

Abstract-Miniaturized systems like wireless microsensors suffer from short operational lifetimes because they lack space to store the energy that wireless transmission, signal conditioning, and monitoring require to operate across time. Harvesting ambient energy circumvents this limitation because the environment is a virtually boundless reservoir of energy. Of available sources, solar light produces the highest power density, and although artificial lighting is not as rich, thermal and magnetic sources produce even lower power densities and mechanical and chemical transducers are difficult to integrate. The problem is microscale photovoltaic (PV) cells only produce 1 and 100 μ W/mm² for artificial and solar lighting, so the act of conditioning and transferring power can dissipate most, if not all, of the power available. The focus of this paper is to introduce and discuss the design challenges associated with harvesting circuits when harnessing, conditioning, and transferring power from tiny PV cells that only generate $1 - 100 \mu$ W.

I. HARVESTING MICROSYSTEMS

Although recent advances in the semiconductor industry suggest that integrating sensors, processors, memory, and radio transceivers into a wireless microsensor node is possible [1]–[2], powering these devices across extended periods remains an issue. The problem is limited space, because small batteries store little energy and replacing or recharging them periodically presents prohibitive personnel costs. Fortunately, because power-hungry functions like telemetry (TX in Fig. 1) seldom engage in a sensor node, drawing energy from the environment to continually charge a small battery is a viable and appealing alternative [1], [3].

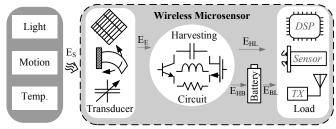


Fig. 1. Harvester-powered wireless microsensor.

Of available ambient sources, solar light offers the highest power density at more than 15 mW/cm² [4]. Artificial lighting generates considerably lower power at 10 – 100 μ W/cm², but thermal and magnetic sources produce even less at 1 – 15 μ W/cm³. The challenge with piezoelectric and chemical transducers is integration. Kinetic energy in motion may produce moderate power at 1 – 300 μ W/cm³, but not all applications vibrate. Ultimately, because solar energy generates so much power, as Table I shows, light remains an alluring source for many practical applications. Still, harnessing light energy from tiny photovoltaic (PV) cells constrains power to below 100 μ W/mm², which parasitic components in the cell and the harvester circuit can exhaust.

Sources		Transduction	Estimated Power
		Mechanism	Density
Light	Solar	Photovoltaic	$< 15 \text{ mW/cm}^2$
Light	Artificial	(PV)	$10 - 100 \ \mu W/cm^2$
Motion		Electrostatic	$50 - 100 \ \mu W/cm^3$
		Electromagnetic	$< 1 \ \mu W/cm^3$
		Piezoelectric	$50 - 300 \mu W/cm^3$
Δ Temp. (10 ^o C)		Seebeck	$5 - 15 \mu W/cm^3$

TABLE I. POWER DENSITIES FROM AMBIENT ENERGY SOURCES.

The aim of this paper is to introduce and discuss the challenges involved in harnessing light energy from miniaturized PV cells that generate less than 100 μ W. To that end, Section II describes the electrical characteristics of PV cells that dictate (in Section III) the operating boundaries of a harvesting microsystem. Section IV then discusses and compares the design and efficiency performance of two basic harvesting approaches: switched-inductor and switched-capacitor circuits and Section V draws relevant conclusions.

II. MINIATURIZED PHOTOVOLTAIC CELLS

Photons in incident light strike and break apart electron-hole (E-H) pairs in photovoltaic (PV) cells to generate current i_{PH} . Because PV cells are, at their core, pn-junction diodes, D_{PV} in the model of Fig. 2 [7] shunts and forward-biases with i_{PH} , if not steered elsewhere. D_{PV} 's junction capacitance C_{PV} also shunts i_{PH} , as does the parasitic peripheral shunt resistance across the structure R_{PV} . In conducting the fraction of i_{PH} that flows out of the cell as i_{PV} , equivalent series (contact) resistances (ESR) R_{ESR} raise D_{PV} 's voltage v_D to boost D_{PV} 's shunting effect on i_{PH} . R_{PV} and R_{ESR} 's combined impact on i_{PV} , however, is normally negligible in these tiny devices because R_{ESR} is small at a few Ω 's and R_{PV} large at M Ω 's:

$$i_{PV} = i_{PH} - I_{S} exp\left(\frac{v_{PV} + i_{PV}R_{ESR}}{V_{t}}\right) - \left(\frac{v_{PV} + i_{PV}R_{ESR}}{R_{PV}} || \frac{1}{sC_{PV}}\right)$$

$$\approx i_{\rm PH} - I_{\rm S} \exp\left(\frac{v_{\rm PV}}{V_{\rm t}}\right) - sC_{\rm PV}v_{\rm PV}, \qquad (1)$$

where V_t is the thermal voltage and C_{PV} depends on v_{PV} .

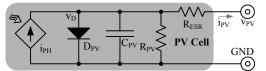


Fig. 2. Photovoltaic (PV) cell model.

Given a particular light intensity and corresponding i_{PH} , D_{PV} 's shunting current i_D increases with v_{PV} . Accordingly, output power P_{PV} , or $i_{PV}v_{PV}$, grows with v_{PV} as long as the rise in P_{PV} exceeds that of diode power P_D , which is why P_{PV} peaks (at $P_{PV(MAX)}$ in Fig. 3) when ΔP_D begins to exceed ΔP_{PV} (at optimum diode voltage $V_{PV(OPT)}$). Increasing light intensity raises i_{PH} (and P_{PV}), so i_D (and its corresponding $V_{PV(OPT)}$) can rise before offsetting ΔP_{PV} . Therefore, tracking maximum power-point $V_{PV(OPT)}$ with respect to light intensity ensures the PV cell generates $P_{PV(MAX)}$.

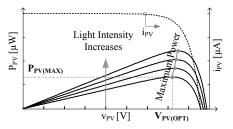


Fig. 3. Typical photovoltaic (PV) cell's power-current-voltage (P-I-V) curves.

III. HARVESTING EFFICIENCY

The acts of converting, transferring, and conditioning energy dissipate power, which is why a harvesting system ultimately supplies a fraction of the energy it receives. A PV cell, for example, converts a fraction of photon source energy E_S (from Fig. 1) into the electrical domain E_E as i_{PH} . Then, depending on how well the system tracks $V_{PV(OPT)}$, D_{PV} , R_{PV} , and R_{ESR} in the cell dissipate a fraction of E_E to output E_{PV} in i_{PV} . The harvesting circuit, which transfers and conditions E_{PV} to charge a battery and supply a load, also consumes power, reducing E_{PV} to usable harvested energy E_H (i.e., E_{HB} and E_{HL} in Fig. 1). As a result, the system efficiency of the harvester (η_S) is the product of photon- i_{PH} , i_{PH} - i_{PV} , and conversion efficiencies E_E/E_S or η_{PH} , E_{PV}/E_E or η_{PV} , and E_H/E_{PV} or η_{CONV} :

$$\eta_{\rm S} = \eta_{\rm PH} \eta_{\rm PV} \eta_{\rm CONV}. \tag{2}$$

A. Light-Current Conversion

Of the photons available in incoming light, only those with energies exceeding the band-gap energy of the semiconductor used to build the PV cell can break apart E-H pairs to generate i_{PH} ; the material loses excess photon energy as heat. Lightconversion efficiency η_{PH} is therefore highest when the spectral energy of the incident light peaks at the band-gap energy of the material. Given this, when exposed to solar light, crystalline silicon outperforms other low-cost semiconductor technologies with efficiencies of 15% to 20% [5]. Amorphous silicon is slightly better under artificial lights and 10% to 20% cheaper, but the absence of a dedicated process and the conversion efficiency of its crystalline counterpart (under variable lighting conditions and limited area) outweigh this small positive offset.

B. Tracking Performance

The act of tracking $V_{PV(OPT)}$ also consumes energy, so balancing tracking accuracy with processing power is important. Predicting (rather than measuring) $V_{PV(OPT)}$'s optimum open-circuit point from empirical information typically offers the best tradeoff [6]–[7], because processing power is low. Monitoring the cell's open-circuit voltage is a weakness, however, because sensing a small open-circuit replica of the cell is wasteful of silicon area (i.e., cost) just as disconnecting the cell is of power (i.e., efficiency).

IV. HARVESTER CIRCUIT

The application space this research targets is light-powered chip-sized sensors that operate continuously, even under cloud cover and artificial lights. Accordingly, this section describes the design constraints such an application places on a harvester circuit. Since the fundamental aim of the system is to generate output power, understanding where and how these circuits dissipate energy is vital, which is why, after operation and design, the focus here shifts to efficiency.

A. System Requirements

Tiny 2 \times 2-mm² PV cells typically generate less than 100 μ W, even under direct sunlight. C_{PV} for these devices is roughly 1 nF and, since D_{PV} 's current increases exponentially with v_{PV} , $V_{PV(OPT)}$ falls slightly below 0.6 - 0.7 V to around 0.55 V. Therefore, to charge a super capacitor at 1 V (i.e., V_0), for example, the harvester circuit must boost the cell's 0.55 V to 1 V with a switched-inductor (SI) or -capacitor (SC) circuit (because unswitched circuits cannot boost voltages). The switching action, unfortunately, produces a ripple at v_{PV} that deviates it from $V_{PV(OPT)}$, so variation Δv_{PV} must remain small (e.g., 50 mV) for P_{PV} to stay near $P_{PV(MAX)}.$ Regulating v_{PV} about $V_{PV(OPT)}$, whether it be an SI or SC circuit, requires a feedback controller that must, by design, operate in subthreshold (with nA's) to consume a diminutive fraction of P_{PV}. In all, SI and SC implementations must condition the PV cell according to these requirements, which Table II summarizes.

TABLE II. SYSTEM REQUIREMENTS

Parameter	Value	Design Target	Value
P _{PV}	$\leq 100 \ \mu W$	V _{PV(OPT)}	0.55 V
C_{PV}	$\approx 1 \text{ nF}$	Vo	1 V
		Δv_{PV}	$\leq 50 \text{ mV}$

B. Switched-Inductor (SI) Boost Converter

<u>Operation</u>: SI circuits transfer energy by energizing (closing switch M_N in Fig. 4a) and de-energizing (closing M_P) an inductor L_H from an input source i_{PV} into an output C_O in alternate switching cycles. When P_{PV} rises, L_H transfers energy packets more often, so switching frequency f_{SW} increases. While L_H 's ESR R_{LESR} , M_N , and M_P dissipate Ohmic power, M_N and M_P 's drivers consume energy to charge and discharge M_N and M_P 's parasitic gate capacitances. However, because i_{PV} is low and transferring small packets of energy requires a high f_{SW} , Ohmic losses are not as significant as gate-drive losses. Fortunately, operating L_H discontinuously, which is to say L_H 's current i_L rises and falls back to zero in a fraction of the switching period T_{SW} , as Fig. 4b shows, decreases the number of switching events (i.e., energy losses) per period.

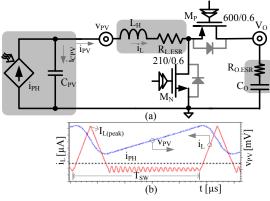


Fig. 4 (a) Switched-inductor circuit and (b) its simulated waveforms.

Design: To keep conduction losses (i.e., Δi_L) and system-inpackage (SiP) dimensions low, a 220-μH, 2 × 2 × 1-mm³ inductor implements L_H. With this L_H, M_N and M_P's respective aspect ratios should (at 210μm/0.6μm and 600μm/0.6μm) balance conduction, switching, and control losses to minimize their net sum. Since i_L is discontinuous and i_{PH} is, for all practical purposes constant through T_{SW}, current difference i_L – i_{PH} discharges and charges C_{PV}, producing ripple Δv_{PV} . However, because L_H must energize to and de-energize from $i_{L(PEAK)}$ (through conduction time t_C) to store and transfer i_{PH} 's maximum energy as charge q_L, worst-case ripple $\Delta v_{PV(MAX)}$ occurs when i_{PH} is so small that C_{PV} supplies all of q_L:

$$\Delta v_{PV(MAX)} = \frac{q_L}{C_{PV}} = \frac{0.5 t_C i_{L(PEAK)}}{C_{PV}} \le 50 \text{ mV}, \quad (3)$$

where $V_{PV(OPT)}$, V_O , and the converter's minimum delay across the loop set t_C and $P_{PV(MAX)}$ and L_H set $i_{L(PEAK)}$ [10].

<u>Losses</u>: L_H 's $R_{L,ESR}$ and M_P and M_N 's combined resistance $R_{SW,EQ}$ conduct i_L , so they dissipate root-mean-square (RMS) Ohmic loss P_R :

$$P_{\rm R} = i_{\rm L(RMS)}^{2} \left(R_{\rm LESR} + R_{\rm SW.EQ} \right).$$
(4)

 M_N also consumes power P_{IV} while conducting $i_{L(PEAK)}$ and transitioning from zero to $V_O + V_D$ across overlap time t_{OV} :

$$P_{\rm IV} = \left[\frac{i_{\rm L(PEAK)}(V_{\rm O} + V_{\rm D})}{2}\right] \left(\frac{t_{\rm OV}}{T_{\rm SW}}\right),\tag{5}$$

where V_D is M_P 's body's diode voltage. Plus, M_N and M_P 's drivers dissipate energy every cycle to charge and discharge M_N and M_P 's combined gate capacitance $C_{G.EQ}$ across V_O :

$$P_{\rm G} = \frac{C_{\rm G.EQ} V_{\rm O}^{2}}{T_{\rm SW}} = C_{\rm G.EQ} V_{\rm O}^{2} f_{\rm SW} \,. \tag{6}$$

Because L_H transfer pockets of energy more often when P_{PV} increases, $i_{L(RMS)}$ increases with f_{SW} , as do P_{IV} and P_G , although not to the same extent, as Fig. 5 shows, assuming feedback controller losses P_O is constant at 1 μ W.

C. Boosting Switched-Capacitor (SC) Charge Pump

<u>Design</u>: SC circuits boost and transfer energy by first paralleling (i.e., charging) flying capacitors (C_{FLY} in Fig. 6a) and then connecting (and discharging) them in series with the

source (v_{PV}) to output V₀. In the parallel phase, v_{PV} first drops to V_{PV(MIN)} because C_{PV} de-energizes quickly into partially discharged C_{FLY}, as Fig. 6b shows, and then rises to V_{PV(MAX)} as i_{PH} charges C_{PV} and C_{FLY} through the phase. In the series phase, v_{PV} again drops to V_{PV(MIN)} because C_{PV} and C_{FLY} discharge into C₀ and then rises because i_{PH} charges C_{PV} and C₀ and discharges C_{FLY}. As before, the circuit transfers energy packets more often (i.e., f_{SW} increases) when i_{PH} rises.

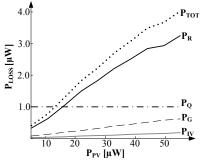


Fig. 5. Simulated switched-Inductor losses across P_{PV} .

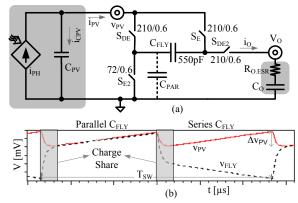


Fig. 6. (a) Switched-capacitor circuit and (b) its simulated waveforms.

<u>Design</u>: Worst-case ripple $\Delta v_{PV(MAX)}$ occurs when i_{PV} is low, when only C_{PV} 's energy charges C_{FLY} quickly from $V_{FLY(MIN)}$ to $V_{PV(MIN)}$ in the parallel phase:

$$C_{PV}\Delta v_{PV(MAX)} = C_{FLY} \left(V_{PV(MIN)} - V_{FLY(MIN)} \right),$$
(7)

and rises slowly from there to $V_{PV(MAX)}$. Because V_O drops across C_{PV} and C_{FLY} (with a low i_{PH}) at the end of the series phase, $V_{FLY(MIN)}$ is $V_O - V_{PV(MAX)}$ and $\Delta v_{PV(MAX)}$ is

$$\Delta v_{PV(MAX)} \approx \left(\frac{C_{FLY}}{C_{PV}}\right) \left(V_{PV(MIN)} + V_{PV(MAX)} - V_{O}\right)$$
$$\approx \left(\frac{C_{FLY}}{C_{PV}}\right) \left(2V_{PV} - V_{O}\right) \le 50 \,\mathrm{mV}$$
(8)

So, to ensure C_{PV} does not discharge beyond $\Delta v_{PV(MAX)}$, C_{PV} (at 1 nF) should be considerably higher than C_{FLY} . A smaller C_{FLY} , however, decreases the charge the circuit delivers per cycle, so f_{SW} and associated losses rise as a result. In this case, switching 550 pF at 74 kHz keeps Δv_{PV} below 50 mV and transistors' aspect ratios in Fig. 6a ensure C_{FLY} charges completely in the parallel phase (across $0.5T_{SW}$) for the highest possible i_{PH} .

<u>Losses</u>: C_0 charges only in the series phase, and since C_{PV} does not supply power because there is no net change in its

voltage (i.e., charge) across this phase, only i_{PH} reaches V_O (for $0.5T_{SW}$) to deliver $0.5i_{PH}V_O$ as output power P_O . Therefore, of P_{PV} (or $i_{PH}V_{PV}$), the switches dissipate (as Ohmic power P_R) what C_O fails to receive in P_O :

$$P_{\rm R} = P_{\rm PV} - P_{\rm O} = i_{\rm PH} (V_{\rm PV} - 0.5 V_{\rm O}), \qquad (9)$$

so, irrespective of the resistance (size) of the switch, P_R increases with i_{PH} , as does f_{SW} . An on-chip C_{FLY} , unfortunately, introduces a parasitic bottom-plate capacitor C_{PAR} (at roughly $0.1C_{FLY}$ [8]) that an off-chip C_{FLY} does not, so the switches dissipate additional energy to charge and discharge C_{PAR} . In other words, P_R is higher when C_{FLY} is on chip, which is why internal $P_{R(INT)}$ is higher than external $P_{R(EXT)}$ in Fig. 7. Switch drivers also consume power P_G when they charge and discharge gate capacitors $C_{G.EQ}$ every cycle:

$$P_{\rm G} = 2 \left(0.5 C_{\rm G.EQ} V_{\rm O}^2 \right) f_{\rm SW}.$$
 (10)

Since increasing i_{PH} means f_{SW} increases, P_G also increases with P_{PV} . As with the SI counterpart, Fig. 7 also assumes quiescent controller power P_Q is constant across P_{PV} at 1 μ W.

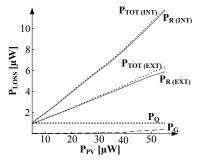


Fig. 7. Simulated on-chip and off-chip switched-capacitor losses across P_{PV} .

D. Inductor- versus Capacitor-Based Harvesters

Irrespective of the approach, RMS current increases with P_{PV} , so Ohmic losses P_R are proportional to P_{PV} and also dominant across most of PPV. PR is lower in SI converters, however, because for the same P_{PV}, i_L's peak is lower than i_{CFLY}'s in SC circuits, which means RMS currents are higher in SC implementations. P_R is also considerably higher when C_{FLY} is on chip, which means SC circuits trade efficiency for integration. More importantly, SI converters need only two transistors to boost v_{PV} to almost any output voltage V_{O} , whereas their SC counterparts require considerably more switches, and SC efficiencies tend to suffer when Vo varies [11]. This is important because the harvester's output is a battery voltage that spans, for example, 0.9 - 1.6 V for NiCd's and NiMH's, 2.7 – 4.2 V for Li Ions, and an even wider range for ultra capacitors. In other words, SI circuits that use only one in-package inductor seem better suited for harnessing light energy from miniaturized PV cells.

A more subtle, but equally important observation is that controller quiescent power P_Q consumes a considerable fraction of all the losses, where even though driving gates dissipate power P_G , P_G is not as important. Note, however, these results only apply to chip-sized light-energy harvesters. Consider that, while voltage regulators draw whatever current is necessary from an input source to regulate the voltage across a variable load, light-energy harvesters regulate the voltage across an input source to draw and deposit as much current as possible into a low-impedance output: a battery. What is more, the power levels chip-sized PV cells generate are substantially low, at less than 100 μ W, so the conclusions drawn in [9], which relate to *higher voltage* and *higher power* voltage regulators, do not necessarily apply here.

V. CONCLUSIONS

For chip-sized light-harvesting circuits to generate power, they must dissipate less energy than miniaturized photovoltaic (PV) cells generate, which might not even exceed 100 µW. The problem is that the photon-current conversion process, the parasitic diode (D_{PV}) in the PV cell, and the harvester circuit all consume power. Therefore, to maximize PV power PPV and minimize D_{PV} losses, the harvester should regulate PV voltage v_{PV} to optimum target $V_{PV(OPT)}$ within a small window $\Delta v_{PV(MAX)}$. Similarly, to maximize harvested output power, the circuit should be efficient, which is to say it should transfer and condition power by switching an in-package inductor. Still, Ohmic losses P_R are dominant and proportional to P_{PV} , with controller quiescent power P_Q not far behind and gatecharging losses P_G further back. Interestingly, capacitor-based circuits consume more Ohmic power P_R because they conduct higher RMS currents (since i_{CFLY} peaks to a higher value than i_L). Moreover, on-chip implementations lose additional power in charging and discharging parasitic bottom-plate capacitors. In other words, switched-inductor harvesters harness more light energy from chip-sized PV cells than switched-capacitor circuits, which is especially important when P_{PV} is low, cloud cover and artificial lighting conditions persist, and unobtrusiveness (i.e., integration) is imperative.

REFERENCES

- P. Dutta *et al.*, "Trio: enabling sustainable and scalable outdoor wireless sensor network deployments," *ISPN*, pp. 407-415, 2006.
- [2] G. Chen *et al.*,"Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells," *Int. Solid-State Circuits Conference*, pp. 288-289, 2010.
- [3] E.O. Torres and G.A. Rincón-Mora, "Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype," *IEEE Trans. on Circuits and Systems I*, vol.56, no.9, pp. 1938-1948, Sept. 2009.
- [4] E.O. Torres and G.A. Rincón-Mora "Long-lasting, self-sustaining, and energy-harvesting system-in-package (SiP) wireless micro-sensor solution", *Int. Conf. on Energy, Environment, and Disasters*, pp. 1-33, Jul. 2005.
- [5] A. Hande et al., "Indoor solar energy harvesting for sensor network router nodes," *Microprocessors & Microsystems*, vol. 31, no. 6, pp. 420-432, Sept. 2007.
- [6] T. Esram *et al.*, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," *IEEE Trans. on Energy Conversion*, vol. 22, no. 2, pp. 439-449, June 2007.
- [7] D. Brunelli *et al.*, "Design of a Solar-Harvesting Circuit for Batteryless Embedded Systems," *IEEE Trans. on Circuits and Systems I*, vol. 56, no. 11, pp. 2519-2528, Nov. 2009.
- [8] D. Baderna, "Efficiency comparison between doubler and Dickson charge pumps," *Int. Symp. on Circuits and Systems*, pp. 1891-1894, May 2005.
- [9] M.D. Seeman and S.R. Sanders, "Analysis and Optimization of Switched-Capacitor DC–DC Converters," *IEEE Trans. on Power Electronics*, vol. 23, no. 2, pp. 841-851, March 2008.
- [10] S. Kim and G.A. Rincon-Mora, "Achieving High Efficiency under Micro-Watt Loads with Switching Buck DC-DC Converters," *Journal* of Low-Power Electronics, vol. 5, no. 2, Aug. 2009.
- [11] I. Chowdhury and D. Ma, "Design of Reconfigurable and Robust Integrated SC Power Converter for Self-Powered Energy-Efficient

Devices," IEEE Trans. on Industrial Electronics, vol. 56, no. 10, pp. 4018-4028, Oct. 2009.