Ву

Gabriel Alfonso Rincón-Mora

School of Electrical and Computer Engineering Georgia Institute of Technology

Rincon-Mora.gatech.edu

Copyright © 2019 by G.A. Rincón-Mora

Contents

	Page
List of Figures	vii
List of Abbreviations	ix
1. Junction FETs	1
1.1. N Channel	1
A. Triode	2
B. Saturation	3
C. I–V Translation	4
D. Symbol	5
1.2. P Channel	5
A. Triode	6
B. Saturation	7
C. I–V Translation	/
D. Symbol	8
2. N-Channel MOSFETs	8
2.1. Accumulation: Cut Off	9
2.2. Depletion: Sub-Threshold	9
A. Triode	11
B. Saturation	12
C. I–V Translation	12
2.3. Inversion	13
A. Ifilode D. Seturation	13
D. Saturation	13
2.4 Body Effect	10
2.5 Symbols	19
3 D Channel MOSEETs	20
	20
3.1. Accumulation: Cut Off	20
3.2. Depletion: Sub-Infeshold	20
A. Illoue B. Saturation	22
C I-V Translation	23
3.3 Inversion	23
A. Triode	24
B. Saturation	26
C. I–V Translation	27
3.4. Body Effect	28
3.5. Symbols	29
3.6. Unifying Convention	29

4. Capacitances	30
4.1. PN-Junction Capacitances	30
4.2. Gate-Oxide Capacitances	31
A. Cut Off	31
B. Sub-Threshold	32
C. Triode Inversion	32
D. Saturated Inversion	33
4.3. MOS Varactors	33
A. Bi-Modal	33
B. Inversion Mode	34
C. Accumulation Mode	35
D. Variations	36
4.4. MOS Diodes	36
A. Diode Connection	36
B. Diode Action	37
5. Short Channels	38
5.1. Drain-Induced Barrier Lowering	39
A. Thinner Oxide	40
5.2. Gate–Channel Field	40
A. Surface Scattering	40
B. Hot-Electron Injection	41
C. Oxide-Surface Ejections	41
D. Fringing Fields	41
5.3. Source–Drain Field	42
A. Velocity Saturation	42
B. Impact Ionization	43
C. Arching Fields	44
D. Lightly-Doped Drain	45
6. Other Considerations	46
6.1. Weak Inversion	46
A. Switching Designs	46
B. Linear Designs	47
6.2. Junction Isolation	50
A. Channel BJIs	51
B. Substrate BJ1s	51
C. Substrate MOSFETs	52
D. Welled MOSFETS	52
E. Process Variants	52
6.5. Diffused-Channel MOSFETS	55
0.4. INOISC A Terminology	54
A. Terminology B. Electronic Noise	54
D. Electronic Noise	55 20
	58
7. Summary	58

List of Figures

	Page
Figure 1. N-channel JFET structure.	2
Figure 2. Uniformly biased N-channel JFET in triode.	2
Figure 3. Asymmetrically biased N-channel JFET in triode.	3
Figure 4. N-channel JFET in saturation.	3
Figure 5. N-channel JFET current.	4
Figure 6. N-channel JFET symbol.	5
Figure 7. P-channel JFET structure.	6
Figure 8. P-channel JFET in triode.	6
Figure 9. P-channel JFET current.	7
Figure 10. P-channel JFET symbol.	8
Figure 11. N-channel MOSFET structure.	9
Figure 12. N-channel MOSFET in accumulation and cut off.	9
Figure 13. N-channel MOSFET in depletion.	9
Figure 14. Band diagram of N-channel MOSFET in depletion.	10
Figure 15. Band diagram of N-channel MOSFET in sub-threshold.	10
Figure 16. Voltage divider across gate oxide and surface-body.	11
Figure 17. Sub-threshold N-channel MOSFET current.	13
Figure 18. Symmetrically inverted N-channel MOSFET in triode.	13
Figure 19. Asymmetrically inverted N-channel MOSFET in triode.	15
Figure 20. Inverted N-channel MOSFET in saturation.	15
Figure 21. Inverted N-channel MOSFET current.	17
Figure 22. N-channel MOSFET symbols.	19
Figure 23. P-channel MOSFET structure.	20
Figure 24. P-channel MOSFET in accumulation and cut off.	20
Figure 25. P-channel MOSFET in depletion.	21
Figure 26. Band diagram of P-channel MOSFET in depletion.	21
Figure 27. Band diagram of P-channel MOSFET in sub-threshold.	21
Figure 28. Sub-threshold P-channel MOSFET current.	23
Figure 29. Symmetrically inverted P-channel MOSFET in triode.	24
Figure 30. Asymmetrically inverted P-channel MOSFET in triode.	25
Figure 31. Inverted P-channel MOSFET in saturation.	26
Figure 32. Inverted P-channel MOSFET current.	27
Figure 33. P-channel MOSFET symbols.	29
Figure 34. Gate-oxide capacitances.	31

Figure 35. Bi-modal P-channel MOSFET varactor.	34
Figure 36. Inversion-mode P-channel MOSFET varactor.	35
Figure 37. Accumulation-mode N-channel MOSFET varactor.	35
Figure 38. N- and P-channel MOSFET diodes.	36
Figure 39. Implicit N- and P-channel MOSFET diodes.	38
Figure 40. Drain-induced punch-through.	39
Figure 41. Drain-induced barrier lowering in an N-channel MOSFET.	39
Figure 42. Channel coupling components.	40
Figure 43. Surface scattering and hot-electron injection in the NMOS.	41
Figure 44. Fringing electrics-field lines around an N-channel MOSFET.	42
Figure 45. Velocity saturation and pinch-off effects in inversion.	43
Figure 46. Impact ionization, avalanche, and hot-electron injection.	44
Figure 47. Lightly-doped-drain MOSFETs	45
Figure 48. Drain current as MOSFET channel forms.	46
Figure 49. Small-signal transconductance across regions.	49
Figure 50. Junction-isolated single-well P-substrate CMOS FETs.	51
Figure 51. Lateral diffused-channel N-channel MOSFET.	53
Figure 52. Spectrum of flicker and thermal noise.	56

length L_{CH} or L and *width* W_{CH} or W are the longitudinal length and width of the overlapping P⁺–N channel–P gate layers. The Ohmic surface contact of the bottom gate is another highly doped P⁺ region.

Fig. 1. N-channel JFET structure.

A. Triode

The NJFET is basically an N resistor pinched by P regions. The geometry and doping concentration of the channel set baseline *channel* resistance R_{CH} . R_{CH} climbs as the depletion space against the top and bottom P regions in Fig. 2 expand to squeeze the channel. These P regions are the *gates* v_{G} of the JFET because their voltage adjusts R_{CH} .

Fig. 2. Uniformly biased N-channel JFET in triode.

 R_{CH} is high when L is long, W is narrow, and *baseline conductivity* K_N is low. The channel dematerializes (and opens) when the gate– channel voltage reverses enough to pinch the entire channel. This negative v_G is the *pinch-off voltage* V_P . So R_{CH} spikes sharply when v_{GS} and v_{GD} reach this V_P :

$$\mathbf{R}_{\mathrm{CH}}\Big|_{\mathbf{v}_{\mathrm{GS}} < \mathbf{v}_{\mathrm{GSP}}}^{\mathbf{v}_{\mathrm{GSP}}} \approx \left(\frac{\mathrm{L}}{\mathrm{W}}\right) \left[\frac{1}{\mathrm{K}_{\mathrm{N}}\left(\mathbf{v}_{\mathrm{GS}} - \mathrm{V}_{\mathrm{P}}\right)}\right] = \left(\frac{\mathrm{L}}{\mathrm{W}}\right) \left(\frac{1}{\mathrm{K}_{\mathrm{N}}\mathbf{v}_{\mathrm{GSP}}}\right) = \left(\frac{\mathrm{L}}{\mathrm{W}}\right) \mathbf{R}_{\mathrm{SH}}.$$
 (1)

This R_{CH} is more accurate when v_{GS} is uniform across the channel and above the pinch-off point. This happens when v_{GS} and v_{GD} or v_{GS} –

A. Triode

 i_D rises with v_{GS} because a positive gate–source voltage reduces the gate– source barrier. This rise is exponential because v_{GS} avails exponentially more electrons than *junction temperature* T_J avails with V_t :

$$i_{\rm D}\Big|^{0 < v_{\rm GS} < v_{\rm TN}} = \left(\frac{W}{L}\right) I_{\rm SN} \exp\left[\left(\frac{C_{\rm OX}}{C_{\rm OX}} + C_{\rm DEP}\right) \left(\frac{v_{\rm GST}}{V_{\rm t}}\right)\right] \left[1 - \exp\left(\frac{-v_{\rm DS}}{V_{\rm t}}\right)\right]$$
$$= \left(\frac{W}{L}\right) C_{\rm DEP} \mu_{\rm N} V_{\rm t}^{2} \exp\left(\frac{v_{\rm GS} - v_{\rm TN}}{n_{\rm I} V_{\rm t}}\right) \left[1 - \exp\left(\frac{-v_{\rm DS}}{V_{\rm t}}\right)\right]$$
(9)

 i_D also increases with v_{DS} because v_{DS} intensifies the field that pulls them to v_D . This i_D corresponds to *triode* because i_D is sensitive to v_{GS} and v_{DS} .

 i_D is high when W is wide, L is short, and the charge held in the *channel–body depletion capacitance* (per unit area) C_{DEP} " is high. These, *electron mobility* μ_N , and V_t set the baseline conductivity of i_D . i_D 's *saturation current* I_{SN} combines the effects of C_{DEP} ", μ_N , and V_t.

Fig. 16. Voltage divider across gate oxide and surface-body.

The surface-to-body *surface potential* ψ_S in Fig. 16 is ultimately the voltage-divided fraction that v_G couples through the *oxide capacitance* (per unit area) C_{OX} " into C_{DEP} ", where

$$C_{OX}'' = \frac{\varepsilon_{OX}}{t_{OX}} = \frac{3.9\varepsilon_0}{t_{OX}},$$
(10)

permittivity in vacuum ε_0 is 8.845 × 10⁻¹² F/m, relative permittivity of silicon dioxide ε_{OX} is 3.9 ε_0 , and oxide thickness t_{OX} is on the order of nanometers. The non-ideality factor n_I in i_D models the reduction in gate drive v_{GST} or $v_{GS} - v_{TN}$ that C_{OX} " and C_{DEP} " cause. Surface imperfections

also re-assert another ψ_B in the opposite direction. Except, v_{SB} reduces this $2\psi_B$ translation. And, v_{SB} alters $|v_{TP}|$ by the amount that γ_P allows.

3.5. Symbols

The PMOS is a four-terminal device with interchangeable v_S and v_D terminals that conduct i_D in Fig. 33 when v_{SG} and v_{SD} are positive. The two vertical lines at the gate symbolize the C_{OX} that induces i_D . i_G is zero because dc current into C_{OX} is zero. So i_D is also the i_S that flows into v_S . The arrow attaches to the v_S that sets v_{SG} and points in the direction of i_S .

Fig. 33. P-channel MOSFET symbols.

The symbol sometimes excludes the body terminal to indicate other transistors share the same body. In these cases, independent access to the body is not possible. The arrow is also sometimes absent in digital circuits to show that source and drain terminals can reverse roles or on both terminals in switching power supplies to confirm that they will reverse roles. A "bubble" next to the gate distinguishes arrowless PFETs from NFETs. This indicates, like in a digital inverter, that PFETs "invert" the action of NFETs.

3.6. Unifying Convention

PFETs and NFETs function the same way. Accumulation, depletion, and inversion result when v_{GS} in NFETs and v_{SG} in PFETs are negative, positive and below v_{TN} and $|v_{TP}|$, and positive and above v_{TN} and $|v_{TP}|$. i_D saturates when v_{DS} in NFETs and v_{SD} in PFETs reach $v_{DS(SAT)}$ ' and

disappear from C_G in Fig. 36. So C_G 's transition between $2C_{OL}$ and C_{OX} is now monotonic with v_{SG} . The drawback to this *inversion-mode* varactor is that the v_{SG} range that changes C_G is usually narrow. v_B connects to the highest potential to reverse body PN junctions to v_S and v_D .

Fig. 36. Inversion-mode P-channel MOSFET varactor.

C. Accumulation Mode

 C_{GB} 's transition in depletion in Fig. 34 is more gradual than C_{GS} and C_{GD} 's in inversion. A gradual transition is appealing because extending the voltage range that transitions capacitance is usually desirable in a varactor. So the purpose of the *accumulation-mode* structure in Fig. 37 is to eliminate the inversion mode from the bi-modal case.

Fig. 37. Accumulation-mode N-channel MOSFET varactor.

The fundamental difference here is that the body is the same type of material as the source and drain. So the body connects the two N^+ terminals when v_{GS} is zero – the line across the source/drain terminals of the NMOS in Fig. 37 represents this connection. A positive v_{GS} reinforces the connection because it pulls and accumulates electrons under the oxide. And a negative v_G repels electrons and depletes the

In PFETs, v_D 's field is so close to v_S that it pushes electrons away from the oxide region near v_S and presses nearby valence electrons into their home sites. Holes can therefore drift more easily. So PFETs also suffer a dynamic reduction in v_T when v_D falls.

A. Thinner Oxide

The surface potential is ultimately the result of capacitor coupling from v_G , v_B (via the body effect), and v_D (with DIBL). So in the absence of v_G and v_B , ψ_S in Fig. 42 is the voltage-divided fraction that v_D 's depletion capacitance C_{JD} to the channel couples across v_G 's C_{OX} , v_S 's C_{JS} , and v_B 's C_{JB} . DIBL is noticeable because short L_{CH} 's increase C_{JD} 's coupling.

Fig. 42. Channel coupling components.

The effect of C_{OX} , C_{JS} , and C_{JB} is to shunt C_{JD} 's coupling. So raising C_{OX} reduces DIBL. This is one of the driving reasons why engineers scale t_{OX} with L_{OX} . Another reason is higher current density i_D/W_{CH} and v_{GS} -to- i_D gain because C_{OX} " in K' climbs with reductions in t_{OX} . Reducing t_{OX} from 25 to 5 nm, for example, can suppress the 250-mV reduction in v_T that 100 mV across v_{DS} can produce when L_{OX} is 40 nm.

5.2. Gate-Channel Field

A. Surface Scattering

Thinner t_{OX} 's intensify vertical gate–channel fields. So on their way to the drain, carriers accelerate and collide with the oxide on the surface of the semiconductor in Fig. 43 more often and with greater force. This scattering effect reduces *surface mobility* and produces noise in i_D . *Surface scattering* intensifies as L_{CH} and t_{OX} scale down.

activate them on purpose for their β_0 . But this is not common practice, however, because they inject i_{SUB} into the shared substrate.

C. Substrate MOSFETs

NFETs built directly over a P substrate share their body with the rest of the die. So independent access to their body terminals is not possible. Engineers sometimes use three-terminal symbols (in Fig. 22) to indicate this. In the case of substrate NFETs, the P body's connection to ground or to the most negative potential is implied. *Substrate MOSFETs* incorporate channel BJTs and substrate diodes.

D. Welled MOSFETs

The body of PFETs built in N wells over a P substrate is the N well. So independent access to their bodies is possible. The four-terminal symbol (in Fig. 33) is therefore more appropriate and almost always used. On occasion, engineers use three-terminal symbols to indicate a pool of welled PFETs share one well and one body connection. *Welled MOSFETs* incorporate channel plus lateral and vertical substrate BJTs.

E. Process Variants

Although less popular, integrating N- and P-channel MOSFETs in N substrates is also possible. In these cases, PFETs sit directly over an N substrate, NFETs lie in P wells, and the N substrate connects to the most positive potential. So PFET body terminals are not available.

Independent access to the body offers a degree of design flexibility that can help optimize and improve circuit performance. Substrate MOSFETs in "vanilla" *single-well* technologies do not offer this option. *Twin-well* or *dual-well* process technologies do because they can embed NFETs and PFETs in their own independent wells. The drawback is the additional expense of more fabrication steps.