Part A

1) \(N_0 = 10^{16} \text{ cm}^{-3} \) \(\Rightarrow \) N-Type

\[N_0 = N(x) = N_b \]

\[P = N - N_b \]

\[B = \frac{N_e}{N_b} \]

\[N_0 = N(x) = N_b \]

\[P_0 = \frac{dP}{dx} \]

\[N_0 = N_b \]

Part B

1) Because it is "depleted" of carriers \(\Rightarrow \) There are no carriers present

2) Transit time

3) False

4) \(p + n \) \(\Rightarrow \) \(N_0 + N_b \) \(\Rightarrow \) \(x_p \ll x_n \) \(\Rightarrow \) \(W \approx x_n \)

\[V = -\frac{E}{q} \]

\[\xi = -\frac{dV}{dy} \]

\[\text{change} = \frac{d\xi}{dx} C_{Si} \]
Part C

- Breakdown, Reverse Bias, and Forward Bias
- Ideal, Constant Voltage Drop, and Exact
\[D = \text{Exact DC Diode Model} \]
\[R_s = \text{Parasitic series resistance} \]
\[C_d = \text{Depletion capacitance} \]
\[\text{(dominant while in } \text{Forward Bias)} \]
\[C_b = \text{Diffusion capacitance} \]
\[\text{(dominant during } \text{Forward Bias)} \]
\[R_s = \text{Small-signal } \]
\[\text{resistance (dominates } \text{I-V relationship of the diode when processing small signals)} \]