MOSFET SPICE Model

- SPICE models the drain current (I_{DS}) of an n-channel MOSFET using:

 Cut-off: ($V_{GS} \leq V_{TH}$)

 $$I_{DS} = 0$$

 Linear: ($0 \leq V_{DS} \leq V_{GS} - V_{TH}$)

 $$I_{DS} = \frac{KP}{2}\left(\frac{W}{L_{eff}}\right)V_{DS}\left[2(V_{GS} - V_{TH})V_{DS} - V_{DS}\right](1 + \text{LAMBDA} \cdot V_{DS})$$

 Saturation: ($0 \leq V_{GS} - V_{TH} \leq V_{DS}$)

 $$I_{DS} = \frac{KP}{2}\left(\frac{W}{L_{eff}}\right)(V_{GS} - V_{TH})^2(1 + \text{LAMBDA} \cdot V_{DS})$$
MOSFET SPICE Model

- Threshold voltage is given by:

\[V_{TH} = V_{TO} + \text{GAMMA}(\sqrt{2\text{PHI}} - V_{BS} - \sqrt{2\text{PHI}}) \]

- SPICE definition for channel length (\(L_{\text{eff}} \)):

\[L_{\text{eff}} = L - 2LD \]

where:
- \(L \) = length of the polysilicon gate
- \(LD \) = gate overlap of the source and drain
MOSFET SPICE Model

- n-channel MOSFET is defined by the SPICE statement:

\[M_{\text{name}} D G S B MOD_{\text{name}} L=_ W=_ AD=_ AS=_ PD=_ PS=_ NRD=_ NRS=_ \]

where: name = name of the device (up to 7 characters)

D, G, S, B = drain, gate, source, and substrate node numbers

MODname = model name for the device (see below)

L = polysilicon gate length (see figure)

W = polysilicon gate width (see figure)

AD = drain area (see figure)

AS = source area (see figure)

PD = perimeter of drain diffusion (not including edge under gate)

PS = perimeter of source diffusion (not including edge under gate)
MOSFET SPICE Model

NRD = number of “squares” in drain diffusion

NRS = number of “squares” in source diffusion

\[
\begin{align*}
 NRS &= N_{\square} \text{(source)} \\
 PS &= 2 \times L_{\text{diff}} \text{(source)} + W \\
 NRD &= N_{\square} \text{(drain)} \\
 PD &= 2 \times L_{\text{diff}} \text{(drain)} + W
\end{align*}
\]
MOSFET SPICE Model

- MOSFET model statement is:

`.MODEL MODname xMOS VTO= KP= GAMMA= PHI= LAMBDA= RD= RS= RSH= CBD= CBS= CJ= MJ= CJSW= MJSW= PB= IS= CGDO= CGSO= CGBO= TOX= LD=`

where:
x = N (for NMOS) or P (for PMOS)

CGDO, CGSO, CGBO = gate overlap capacitance with drain, source, body

RD = drain contact resistance (Ω)

RS = source contact resistance (Ω)

RSH = sheet resistance of drain/source diffusions

(Ω/square; NRD and NRS must be specified)

IS = diode saturation current for pn junctions at the drain and source
MOSFET SPICE Model

- MOSFET model statement (cont.):

 CBD = zero-bias drain-substrate capacitance (F)

 \[C_{BD}(V_{BD}) = \frac{C_{BD}}{(1 - V_{BD}/PB)^{MJ}} \]

 CBS = zero-bias source-substrate capacitance (F)

 \[C_{BS}(V_{BS}) = \frac{C_{BS}}{(1 - V_{BS}/PB)^{MJ}} \]

 PB = built-in potential for the substrate junctions (V)

 MJ = bulk junction grading coefficient
MOSFET SPICE Model

More accurate simulations incorporate both the planar junction capacitance and perimeter (sidewall) capacitances as:

\[
C_{BD}(V_{BD}) = \frac{C_J \cdot AD}{(1 - V_{BD}/PB)^{MJ}} + \frac{C_{JSW} \cdot PD}{(1 - V_{BD}/PB)^{MJSW}}
\]

\[
C_{BS}(V_{BS}) = \frac{C_J \cdot AS}{(1 - V_{BS}/PB)^{MJ}} + \frac{C_{JSW} \cdot PS}{(1 - V_{BS}/PB)^{MJSW}}
\]

where:
- \(C_J\) = zero-bias planar substrate junction capacitance (F/m²)
- \(C_{JSW}\) = zero-bias planar sidewall junction capacitance (F/m)
- \(MJSW\) = sidewall junction grading coefficient
MOSFET SPICE Model

- These and remaining nMOS model parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>SPICE name</th>
<th>Units</th>
<th>Standard Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel length</td>
<td>L</td>
<td>LEFF</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Polysilicon gate length</td>
<td>L_{gate}</td>
<td>L</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Gate-source overlap</td>
<td>L_{D}</td>
<td>LD</td>
<td>m</td>
<td>0</td>
</tr>
<tr>
<td>Transconductance parameter</td>
<td>μ_nC_{ox}'</td>
<td>KP</td>
<td>A/V2</td>
<td>50 x 10$^{-6}$</td>
</tr>
<tr>
<td>Threshold voltage</td>
<td>V_{T0}</td>
<td>VTO</td>
<td>V</td>
<td>1.0</td>
</tr>
<tr>
<td>Channel length modulation parameter</td>
<td>λ</td>
<td>LAMBDA</td>
<td>V$^{-1}$</td>
<td>0.1/L (L in µm)</td>
</tr>
<tr>
<td>Backgate effect parameter</td>
<td>γ</td>
<td>GAMMA</td>
<td>V$^{1/2}$</td>
<td>0.6</td>
</tr>
<tr>
<td>Bulk potential</td>
<td>ϕ_F</td>
<td>PHI</td>
<td>V</td>
<td>0.8</td>
</tr>
<tr>
<td>Parameter</td>
<td>Symbol</td>
<td>SPICE name</td>
<td>Units</td>
<td>Standard Value</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Gate oxide thickness</td>
<td>t_{ox}</td>
<td>TOX</td>
<td>angstroms</td>
<td>150</td>
</tr>
<tr>
<td>Gate-drain overlap capacitance</td>
<td>C_{gd}</td>
<td>CGDO</td>
<td>F/m</td>
<td>5×10^{-10}</td>
</tr>
<tr>
<td>Gate-source overlap capacitance</td>
<td>C_{gs}</td>
<td>CGSO</td>
<td>F/m</td>
<td>5×10^{-10}</td>
</tr>
<tr>
<td>Zero-bias planar substrate depletion capacitance</td>
<td>C_{j0}</td>
<td>CJ</td>
<td>F/m2</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Zero-bias sidewall substrate depletion capacitance</td>
<td></td>
<td>CJSW</td>
<td>F/m</td>
<td>5×10^{-10}</td>
</tr>
<tr>
<td>Substrate junction potential</td>
<td>ϕ_B</td>
<td>PB</td>
<td>V</td>
<td>0.95</td>
</tr>
<tr>
<td>Planar substrate junction grading coefficient</td>
<td></td>
<td>MJ</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Sidewall substrate junction grading coefficient</td>
<td></td>
<td>MJSW</td>
<td>-</td>
<td>0.33</td>
</tr>
</tbody>
</table>
ID vs VDS for NMOS
* (W/L = 1)
M1 D G S 8 NMOS2 (W=1u L=1u)
VG G 0 2
VD D 0 5
VS S 0 0
VB B 0 0
*
.MODEL NMOS2 NMOS(VTO=1.0 KP=25E-6 LAMBDA=0.0)
.OP
.DC VDS 0 12 0.2 VG 1 4 0.25
.PRINT DC ID(M1)
.PROBE
.END