Errata/Notes for Switched Inductor Power IC Design

By Prof. Gabriel A. Rincón-Mora, Ph.D.
Sec. 1.1.3: Conductors like metal conduct charge easily because valence electrons are so weakly bound to their home sites that they are practically free and available for conduction. Ions in aqueous solutions of salts behave like these valence electrons, so they are also conductors.

Sec. 1.1.4.C: Since intrinsic molecules also scatter with temperature, molecular resistance rises with temperature. So mobility increases with the thermal energy of valence electrons in impurity atoms until the molecular resistance of the lattice overcomes this energy. This inflection temperature, where the effects balance and past which mobility falls, climbs with higher doping concentration.

Ex. 3.3: ... $\mathrm{t}_{\mathrm{E}}, \mathrm{t}_{\mathrm{D}}$, and i_{L} 's variation when... $\mathrm{i}_{\mathrm{L}(\mathrm{AVG})}$ is 25 mA , t_{sw} is $1 \mu \mathrm{~s}$, and...

$$
\mathrm{i}_{\mathrm{LAVG})}=25 \mathrm{~mA}<\frac{\Delta \mathrm{i}_{\mathrm{L}}}{2}=\frac{66 \mathrm{~m}}{2}=33 \mathrm{~mA}
$$

Sec. 3.2.6: Body terminals should connect to source/drain terminals so the body diodes that remain block undesired current conduction. These connections should therefore short the body diodes that would otherwise conduct undesired currents.

Ex. 3.4: $R_{\text {SER }}<\ldots=1.2 \Omega \ldots \mathrm{R}_{\mathrm{CH}}<\ldots=500 \mathrm{~m} \Omega \ldots . . \mathrm{t}_{\mathrm{sw}}<10 \%(0.25) \mathrm{t}_{\mathrm{LC}}=\ldots \mathrm{f}_{\mathrm{SW}}>620 \mathrm{kHz}$
Ex. 3.5-3.6: Circuit simulated with SPICE code:

Eq. 3.34: $\quad V_{S W I(A V G)}=v_{\text {IN }} \mathrm{E}_{\mathrm{E}}$...
Eq. 3.35: $\quad \operatorname{Vswo}(A V G)=(0) \mathrm{d}^{\prime} \ldots$
Eq. 3.36: $\quad \frac{\mathrm{d}_{\mathrm{E}}{ }^{\prime}}{\mathrm{d}_{\mathrm{D}}{ }^{\prime}}=\frac{\mathrm{v}_{\mathrm{D}}}{\mathrm{v}_{\mathrm{E}}}=\frac{\mathrm{v}_{\mathrm{O}}+\mathrm{v}_{\mathrm{DG}}+\mathrm{v}_{\mathrm{D}}}{\mathrm{v}_{\mathrm{IN}}}=\ldots$
Eq. 3.37: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}+v_{D G}+v_{D O}}{v_{I N}+v_{O}+v_{D G}+v_{D O}}>d_{E}$

Ex. 3.7: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{D}+v_{D G}+v_{D O}}{v_{\text {IN }}+v_{O}+v_{D G}+v_{D O}}=\ldots$
Circuit simulated with SPICE code:

Eq. 3.39: $\quad V_{S W I(A V G)}=v_{\text {IN }} d_{E}$ "...
Eq. 3.40: $\quad V_{S W O(A V G)}=(0) d_{E}{ }^{\prime \prime} . .$.
Eq. 3.41: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}}{v_{\text {IN }}+v_{O}} \ldots$
Ex. 3.8: $d_{E^{\prime}}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{0}}{v_{I N}+v_{O}} \ldots$
Eq. 3.47: $\quad v_{O}=v_{S W I(A V G)}=v_{I N} d_{E} \ldots$
Eq. 3.48: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{0}+v_{D G}}{\left(v_{I N}-v_{0}\right)+\left(v_{\mathrm{O}}+v_{D G}\right)}=\frac{v_{0}+v_{D G}}{v_{I N}+v_{D G}}>d_{E}$
Ex. 3.10: $d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}+v_{D G}}{v_{\mathrm{IN}}+v_{D G}}=\ldots$
Eq. 3.50: $\quad \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\operatorname{swi}(A V G)}=\mathrm{v}_{\mathrm{IN}} \mathrm{d}_{\mathrm{E}}{ }^{\prime \prime} . .$.
Eq. 3.51: $\quad d_{E}{ }^{\prime \prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}}{v_{I N}}+\ldots$

$$
\text { Ex. 3.11: } \quad d_{E}^{\prime \prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{0}}{v_{I N}}+\ldots
$$

Eq. 3.58: $\quad \mathrm{v}_{\mathrm{IN}}=\mathrm{v}_{\mathrm{SWO}(\mathrm{AVG})}=(0) \mathrm{d}_{\mathrm{E}}$ '...
Eq. 3.59: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{D}+v_{D O}-v_{I N}}{v_{I N}+\left(v_{O}+v_{D O}-v_{I N}\right)}=\ldots$
Ex. 3.13: $\quad d_{E}{ }^{\prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}+v_{D O}-v_{I N}}{v_{\text {IN }}+\left(v_{O}+v_{D O}-v_{I N}\right)}=\ldots$
Eq. 3.61: $\quad \mathrm{V}_{\mathrm{IN}}=\operatorname{VSwo}(\operatorname{AVG})=(0) \mathrm{d}_{\mathrm{E}}$ "...

Eq. 3.62: $\quad d_{E}{ }^{\prime \prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{O}-v_{I N}}{v_{O}}+\ldots$
Ex. 3.14: $d_{E}{ }^{\prime \prime}=\frac{v_{D}}{v_{E}+v_{D}}=\frac{v_{0}-v_{1 N}}{v_{O}}+\ldots$
Eq. 4.2: $\quad \sigma_{R} \equiv \ldots$
Eq. 4.10: $\quad i_{L_{\text {(PK) }}}=\sqrt{2 d_{E}\left(\frac{v_{E}}{L_{X}}\right) t_{t_{\text {SW }}} i_{(A V G)}}=\sqrt{2\left(\frac{v_{\mathrm{D}} \| \mathrm{v}_{\mathrm{E}}}{\mathrm{L}_{\mathrm{X}}}\right) \mathrm{t}_{\mathrm{SW}}\left(\frac{\mathrm{i}_{\mathrm{O}(\mathrm{AVG})}}{\mathrm{d}_{\mathrm{O}}}\right)}$
Ex. 4.1-4.2, 4.5: Results are approximations because R_{L} and R_{E} are unaccounted non-idealities in $d_{E}-d_{E}$ should be higher. Approximations are not bad because v_{R} is a small fraction of v_{E} and v_{D}.

Sec. 4.3.2.C: In steady state, io supplies a static or regulated load, so io is io(AVG) and Δi_{o} is zero.
Fig. 4.20: \quad Static io is io(AVG).
Ex. 4.5: $\quad \sigma_{\mathrm{RC}}=\frac{\mathrm{P}_{\mathrm{RC}}}{\left(\mathrm{i}_{\mathrm{o}} / \mathrm{d}_{\mathrm{O}}\right) \mathrm{d}_{\mathrm{IN}} \mathrm{v}_{\mathrm{IN}}}=\frac{13 \mathrm{~m}}{(250 \mathrm{~m} / 50 \%)(1)(2)}=1.3 \%$
Eq. 4.25: $\quad P_{R(D(D)}=\ldots=i_{o}{ }^{2} R_{C}\left[1-d_{D}\left(\frac{t_{C}}{t_{s w}}\right)\right]+\left[\left(\frac{i_{L(P K)}}{2}-i_{o}\right)^{2}+\left(\frac{0.5 i_{L(P K)}}{\sqrt{3}}\right)^{2}\right] \mathrm{R}_{C} \mathrm{~d}_{\mathrm{D}}\left(\frac{\mathrm{t}_{\mathrm{C}}}{\mathrm{t}_{\mathrm{sw}}}\right)$
Ex. 4.6: $\quad P_{R(D O)}=i_{o}{ }^{2} R_{C}\left[1-d_{D}\left(\frac{t_{C}}{t_{S W}}\right)\right]+\left[\left(\frac{i_{L(P K)}}{2}-i_{o}\right)^{2}+\left(\frac{0.5 i_{L P R)}}{\sqrt{3}}\right)^{2}\right] R_{C} d_{D}\left(\frac{t_{C}}{t_{S W}}\right)=\ldots$
Ex. 4.7, 4.9, 4.14: ...ideal synchronous boost...
Ex. 4.8: ...ideal synchronous buck...

$$
\mathrm{t}_{\mathrm{C}}=\left(\frac{\mathrm{i}_{\mathrm{L}(\mathrm{PK})}}{\mathrm{d}_{\mathrm{E}}}\right)\left(\frac{\mathrm{L}_{\mathrm{X}}}{\mathrm{v}_{\mathrm{E}}}\right) \approx 450 \mathrm{~ns}
$$

Re-calculate $d_{E}: i_{L(P K)}: \mathrm{t}_{\mathrm{C}}$ and iterate until values match:

$$
\begin{aligned}
& \rightarrow \quad d_{E}=52 \%, i_{L(P K)}=46 \mathrm{~mA}, \mathrm{t}_{\mathrm{C}}=440 \mathrm{~ns} \\
& \mathrm{P}_{\mathrm{DT}} \approx \mathrm{i}_{\mathrm{L}(\mathrm{PK})} v_{\mathrm{DG}}\left(\frac{\mathrm{t}_{\mathrm{DT}}}{\mathrm{t}_{\mathrm{SW}}}\right)=(46 \mathrm{~m})(700 \mathrm{~m})\left(\frac{50 \mathrm{n}}{1 \mu}\right)=1.6 \mathrm{~mW} \\
& \sigma_{\mathrm{DT}}=\frac{\mathrm{P}_{\mathrm{DT}}}{\mathrm{~d}_{\mathrm{IN}}\left(\mathrm{i}_{\mathrm{OAVG})} / \mathrm{d}_{\mathrm{O}}\right) \mathrm{v}_{\mathrm{IN}}}=\frac{1.6 \mathrm{~m}}{(52 \%)(10 \mathrm{~m} / 1)(4)}=7.7 \%
\end{aligned}
$$

Fig. 4.22:

Fig. 4.23:

Fig. 4.24:

Eq. 4.37-4.42: When i_{P} isn't negligible, i_{P} raises $i_{D S}$ \& the $v_{T H(C)}$ that sets $t_{I_{(C)}}$.
Eq. 4.42: $\quad \mathrm{t}_{\mathrm{I}(\mathrm{C})} \approx \mathrm{t}_{\mathrm{TH}(\mathrm{C})}-\mathrm{t}_{\mathrm{T} 0}=\ldots$
Ex. 4.9: SPICE: ...id(Meg) often includes C_{GD} 's and D_{DB} 's currents.
Eq. 4.45, 4.47: When i_{N} isn't negligible, i_{N} reduces $\mathrm{i}_{\mathrm{DS}} \&$ the $\mathrm{v}_{\mathrm{TH}(\mathrm{O})}$ that sets $\mathrm{t}_{\mathrm{I}(\mathrm{O})}$.
Eq. 4.47: $\quad \mathrm{t}_{\mathrm{I}(\mathrm{O})} \approx \mathrm{t}_{\mathrm{T} 0}-\mathrm{t}_{\mathrm{TH}(\mathrm{O})}=\ldots$
Ex. 4.14: SPICE: vdo do 0 dc=1 pulse $01565 n \ln 1 n 385 n 1 u$
Eq. 4.66: $\quad \mathrm{q}_{\mathrm{G}} \approx\left(\mathrm{C}_{\mathrm{GS}}+\mathrm{C}_{\mathrm{GB}}+\mathrm{C}_{\mathrm{GD}}\right) \mathrm{v}_{\mathrm{DD}}+\mathrm{C}_{\mathrm{GD}(\mathrm{SAT})} \Delta \mathrm{v} \mathrm{sw}$
Ex. 4.18: ...ideal synchronous buck-boost...
$d_{\text {IN }}=d_{E}=\frac{v_{0}}{v_{\text {IN }}+v_{O}}+\ldots$
$d_{O}=d_{D}=1-d_{E}=1-68 \%=32 \%$
$\Delta \mathrm{i}_{\mathrm{L}}=\ldots=\left(\frac{\mathrm{v}_{\mathrm{NV}}}{\mathrm{L}_{\mathrm{X}}}\right) \mathrm{d}_{\mathrm{E}} \mathrm{t}_{\mathrm{SW}}=\left(\frac{2}{10 \mu}\right)(68 \%)(1 \mu)=140 \mathrm{~mA}$
$\Delta \mathrm{v}_{\mathrm{SWI}}=\mathrm{v}_{\mathrm{DG}}=400 \mathrm{mV}$
$\mathrm{q}_{\mathrm{G}} \approx \ldots=\{(210 \mathrm{p})(400 \mathrm{~m})+[2(210 \mathrm{p})+1.3 \mathrm{n}](2)\} \mathrm{W}_{\mathrm{CH}}=(3.5 \mathrm{n}) \mathrm{W}_{\mathrm{CH}}$
$\mathrm{P}_{\mathrm{G}}, \mathrm{W}_{\mathrm{DG}}, \mathrm{R}_{\mathrm{DG}}, \mathrm{P}_{\mathrm{MOS}}, \& \sigma_{\text {MOS }}$ with new q_{G}

$$
\approx(7.0 \mathrm{~m}) \mathrm{W}_{\mathrm{CH}}, 110 \mathrm{~mm}, 5.4 \mathrm{~m} \Omega, 1.5 \mathrm{~mW}, 0.14 \%
$$

Eq. 5.55:

$$
\left.\left.\mathrm{A}_{\mathrm{G}-} \equiv \frac{\mathrm{i}_{\mathrm{G}}}{\mathrm{v}_{\mathrm{IN}}}\right|_{\mathrm{v}_{0}=0} \equiv \frac{\mathrm{i}_{\mathrm{G} 0}-\mathrm{i}_{\mathrm{B}}}{\mathrm{v}_{\mathrm{IN}}}\right|_{\mathrm{v}_{\mathrm{o}}=0}=\mathrm{A}_{\mathrm{G} 0}-\frac{1}{\mathrm{Z}_{\mathrm{B}}}=\mathrm{A}_{\mathrm{G} 0}\left(1-\frac{\mathrm{sC}_{\mathrm{B}}}{\mathrm{~A}_{\mathrm{G} 0}}\right)=\mathrm{A}_{\mathrm{G} 0}\left(1-\frac{\mathrm{s}}{2 \pi \mathrm{z}_{\mathrm{C}-}}\right)
$$

Eq. 5.64: $\quad \cdots \frac{1}{2 \pi R_{C} C_{o}} \equiv f_{C} \cdots$
Ex. 5.9: $\quad f_{C}=\frac{1}{2 \pi R_{C} C_{o}} \ldots=3.2 \mathrm{MHz}$
$\mathrm{f}_{\mathrm{CP}}<\mathrm{z}_{\mathrm{L}}<\mathrm{f}_{\mathrm{LC}}<\mathrm{f}_{\mathrm{C}} \quad \therefore \quad \ldots<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}$
Ex. 5.10: $\quad . . \mathrm{f}_{\mathrm{C}}=3.2 \mathrm{MHz} . .$. from previous example

$$
\mathrm{f}_{\mathrm{LC}}<\mathrm{z}_{\mathrm{L}}<\mathrm{f}_{\mathrm{C}} \quad \therefore \quad \ldots<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}
$$

Ex. 5.11: $\quad . . \mathrm{f}_{\mathrm{C}}=3.2 \mathrm{MHz} . .$. from previous example
or $\quad \mathrm{Q}_{\mathrm{LC}}=\frac{\mathrm{f}_{\mathrm{LC}}}{\mathrm{f}_{\mathrm{CP}}}=2 \pi\left(\mathrm{R}_{\mathrm{C}}+\mathrm{R}_{\mathrm{LD}}\right) \mathrm{C}_{\mathrm{o}} \mathrm{f}_{\mathrm{LC}}=2 \pi\left(75 \mathrm{~m}+\mathrm{R}_{\mathrm{LD}}\right)(5 \mu)(22 \mathrm{k}) \leq 1$
$\therefore \quad \mathrm{R}_{\mathrm{LD}} \leq 1.4 \Omega$
$\ldots<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}$
Ex. 5.12: $\quad \mathrm{f}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{R}_{\mathrm{C}} \mathrm{C}_{\mathrm{o}}} \ldots=3.2 \mathrm{kHz}$
$\mathrm{z}_{\mathrm{L}}<\mathrm{f}_{\mathrm{CP}}<\mathrm{f}_{\mathrm{C}}<\mathrm{f}_{\mathrm{LC}} \ldots$
Ex. 5.13: $\quad . . \mathrm{f}_{\mathrm{C}}=3.2 \mathrm{MHz} . .$. from previous example

$$
\mathrm{f}_{\mathrm{CP}}<\mathrm{f}_{\mathrm{L}}<\mathrm{f}_{\mathrm{LC}}<\mathrm{f}_{\mathrm{C}} \quad \therefore \quad \ldots<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}
$$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{G}(\mathrm{LC})} \approx \frac{1}{\mathrm{R}_{\mathrm{L}}+\left(\mathrm{R}_{\mathrm{C}} \| \mathrm{R}_{\mathrm{LD}}\right)}=\frac{1}{50 \mathrm{~m}+(10 \mathrm{~m} \| 100)}=\ldots \\
& \mathrm{A}_{\mathrm{V}(\mathrm{LC})}=\mathrm{A}_{\mathrm{G}(\mathrm{LC})}\left(\frac{1}{2 \pi \mathrm{f}_{\mathrm{LC}} \mathrm{C}_{\mathrm{o}}} \| \mathrm{R}_{\mathrm{LD}}\right)=(17)\left(\frac{1}{2 \pi(22 \mathrm{k})(5 \mathrm{k})} \| 100\right)=\ldots
\end{aligned}
$$

Ex. 5.14: $\quad . . \mathrm{f}_{\mathrm{C}}=3.2 \mathrm{MHz} . .$. from previous example

$$
\ldots<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}
$$

Ex. 5.15: $\quad Q_{L C}=\frac{f_{L C}}{f_{C P}}=2 \pi\left(R_{C}+R_{L D}\right) C_{0} f_{L C}=2 \pi\left(10 m+R_{L D}\right)(5 \mu)(22 k) \leq 1$
or $\quad Q_{L C}=\frac{f_{L P}}{f_{L C}}=\frac{R_{L}+R_{L D}}{2 \pi L_{x} f_{L C}}=\frac{50 m+R_{L D}}{2 \pi(10 \mu)(22 k)} \leq 1$
Ex. 5.16: $\quad f_{C}=\frac{1}{2 \pi R_{C} C_{o}} \ldots=3.2 \mathrm{kHz}$

$$
\ldots \mathrm{f}_{\mathrm{CS}}<\mathrm{z}_{\mathrm{C}}=\mathrm{f}_{\mathrm{C}}<\mathrm{f}_{\mathrm{LC}} \ldots
$$

Fig. 5.27:

Eq. 5.90: $\quad i_{1}{ }^{\prime} \equiv \ldots=d_{e}{ }^{\prime} A_{L}=\left.d_{e}{ }^{\prime}\left(\frac{\partial i_{L}}{\partial d_{E}}\right)\right|_{v_{0}=0}=\ldots$
Eq. 5.98: $\quad k_{d}$ is the small-signal fraction of T_{E}, T_{C}, and $I_{L(P K)}$.
Eq. 5.100: $\quad P_{R O}=\ldots \equiv \frac{E_{L X}}{T_{S W}}=\ldots$
Eq. 5.109: $\quad A_{\text {vo }} \equiv \ldots=\left(\frac{\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{D}}}{\mathrm{D}_{\mathrm{O}}}\right)\left(\frac{1-\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{DO}}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{sw}}}\right)\left\{\frac{\left(\mathrm{Z}_{\mathrm{C}}+\mathrm{R}_{\mathrm{C}}\right) \| \mathrm{R}_{\mathrm{LD}}}{\mathrm{Z}_{\mathrm{LO}}+\mathrm{R}_{\mathrm{LO}}+\left[\left(\mathrm{Z}_{\mathrm{C}}+\mathrm{R}_{\mathrm{C}}\right) \| \mathrm{R}_{\mathrm{LD}}\right]}\right\}$
Eq. 5.115: $\quad \mathrm{A}_{\mathrm{VO}} \equiv \ldots=\ldots=\mathrm{A}_{\mathrm{LI}} \ldots \approx \ldots$
Ex. 5.19: $\quad A_{V O 0}=A_{L I}\left(R_{D O} \| R_{L D}\right) \approx \ldots$
Sec. 6.2.1: \quad SPICE Model for Op Amp's $A_{v o}$ and p_{A} :

* $\mathrm{A}_{\mathrm{V}}=1 \mathrm{kV} / \mathrm{V}, \mathrm{p}_{\mathrm{A}}=42 \mathrm{kHz}$
eav0 vo 0 vp vn 1000
rpa va vb 1
cpa vb 03.791 u
eavo vo 0 vb 01

Fig. 6.16:

Note: $i_{1}{ }^{\prime}$ carries i_{1}.

Fig. 6.19:

Note: $i_{1}{ }^{\prime}$ carries i_{1}.
Eq. 6.59: $\quad\left|A_{\beta}\right| \ldots \leq\left|A_{F}\right| \ldots$
Eq. 6.60: $\quad\left|A_{F}\right| \ldots \leq\left|A_{\beta}\right| \ldots$
Eq. 6.75: $\quad \ldots \leq\left|\mathrm{A}_{\mathrm{Fo}}\right| \ldots$
Eq. 6.80: The PWM is usually the culprit that imposes $p_{\text {PWM }} \approx \mathrm{p}_{\mathrm{SW}}$, so $\mathrm{A}_{\mathrm{PWM}} \equiv \ldots \approx \frac{1 / \mathrm{v}_{\mathrm{EOPPP}}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{SW}}}$
Eq. 6.81: $\quad A_{\text {SL }(C C M)} \equiv \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{d}_{\mathrm{e}}} \approx\left(\frac{\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{D}}}{\mathrm{D}_{\mathrm{O}}}\right)\left(\frac{\mathrm{R}_{\mathrm{LD}}}{\mathrm{R}_{\mathrm{LO}}+\mathrm{R}_{\mathrm{LD}}}\right)\left\{\frac{\left(1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{C}}\right)\left(1-\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{DO}}\right)}{\left[\left(\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{LC}}\right)^{2}+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{LC}} \mathrm{Q}_{\mathrm{LC}}+1\right]}\right\}$
Ex. 6.8: $\quad C_{o}=5 \mu \mathrm{~F}$
Sec. 6.4.4: Current-mode loops usually regulate i_{L} (instead of $i_{D O}$) to exclude the effects of z_{DO}, which would otherwise compromise the stability of the current loop.

Eq. 6.87: $\quad A_{L G} \equiv \frac{v_{\mathrm{FB}}}{\mathrm{v}_{\mathrm{E}}}=\ldots=\ldots \approx \frac{\mathrm{A}_{\mathrm{E}} \mathrm{A}_{\mathrm{G} 0} \mathrm{D}_{\mathrm{o}} \mathrm{R}_{\mathrm{LD}} \beta_{\mathrm{FB}}\left(1-\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{DO}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{C}}\right)}{\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{G}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{sW}}\right)\left(1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{CP}}\right)}$
Eq. 6.90: $\quad \mathrm{A}_{\mathrm{SL}(\mathrm{DCM})} \equiv \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{d}_{\mathrm{e}}{ }^{\prime}} \approx\left(\frac{\mathrm{I}_{\mathrm{LPKK})}}{\mathrm{D}_{\mathrm{E}}}\right)\left(\mathrm{R}_{\mathrm{DO}} \| \mathrm{R}_{\mathrm{LD}}\right)\left(\frac{1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{C}}}{1+\mathrm{s} / 2 \pi \mathrm{p}_{\mathrm{CS}}}\right)$
Eq. 6.93: \quad In general, $\mathrm{i}_{\mathrm{L} / \mathrm{DO} / \mathrm{O}}=\ldots$

Fig. 6.43:

Eq. 6.94: $\quad A_{I L}$ excludes $p_{s w}$ (which the PWM usually imposes on $A_{L G}$):

$$
\mathrm{A}_{\mathrm{IL}(\mathrm{CCM})} \equiv \frac{\mathrm{i}_{\mathrm{I}}}{\mathrm{~d}_{\mathrm{e}}{ }^{\prime}}=\ldots=\ldots=\ldots \approx\left[\frac{\mathrm{V}_{\mathrm{E}}+\mathrm{V}_{\mathrm{D}}}{\mathrm{D}_{\mathrm{O}}{ }^{2}\left(\mathrm{R}_{\mathrm{LO}}+\mathrm{R}_{\mathrm{LD}}\right)}\right]\left[\frac{1+\mathrm{s} / 2 \pi \mathrm{z}_{\mathrm{CP}}}{\left(\mathrm{~s} / 2 \pi \mathrm{p}_{\mathrm{LC}}\right)^{2}+\mathrm{s} /\left(2 \pi \mathrm{p}_{\mathrm{LC}} \mathrm{Q}_{\mathrm{LC}}\right)+1}\right]
$$

Fig. 6.44:

Fig. 6.45:

Note: A_{IF} includes Z_{DO}.
Eq. 6.98: $\quad\left|A_{I F}\right| \ldots \geq\left|A_{I B}\right| \ldots$
Ex. 6.17: $\quad \mathrm{A}_{\mathrm{G} 0}=\ldots \approx \ldots=370 \mathrm{~mA} / \mathrm{V}=\ldots$
Eq. 6.100: $\quad\left|A_{I F}\right| \ldots \leq\left|A_{I B}\right| \ldots$

Fig. 6.46:

Fig. 6.49:

Eq. 7.6: $\quad \mathrm{K}_{\mathrm{VO}} \equiv \ldots=\Delta \mathrm{v}_{\mathrm{ID}}\left(\frac{\mathrm{A}_{\mathrm{Vo}}}{\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}}\right) \geq 1$
Ex. 7.1: SPICE: vs ... pulse 200m 500m $0999 n$ 1n 0n 1u
Sec. 7.1.1.D: $\quad \beta_{\mathrm{FBI}}$ should be β_{IFB}.

Fig. 7.9:

Ex. 7.2: SPICE: vs ... pulse 200 m 500 m 0999 n 1n 0n 1u
Sec. 7.1.2.C: $\quad \beta_{\text {FBI }}$ should be β_{IFB}.
Ex. 7.4: $\quad V_{O(A V G)}=\ldots=\ldots=1.80 \mathrm{~V} \pm 31 \mathrm{mV}$

Fig. 7.20:

Ex. 7.8:

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{IOS}}=\ldots=\ldots=335 \mathrm{mV} \\
& \mathrm{v}_{\mathrm{VOS}} \approx \ldots=\ldots=635 \pm 200 \mathrm{mV}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{FB}(\mathrm{AVG})} \approx \ldots=\ldots=565 \pm 200 \mathrm{mV} \\
& \beta_{\mathrm{FB}} \equiv \frac{\overline{\mathrm{v}_{\mathrm{FB}(\mathrm{AVG})}}}{\mathrm{v}_{\mathrm{O}(\mathrm{AVG})}}=\frac{565 \mathrm{~m}}{1.8}=31.4 \% \\
& \mathrm{v}_{\mathrm{O}(\mathrm{AVG})}=\frac{\mathrm{v}_{\mathrm{FB}(\mathrm{AVG})}}{\beta_{\mathrm{FB}}}=\frac{565 \mathrm{~m}}{31.4 \%}=1.80 \mathrm{~V} \pm 640 \mathrm{mV}
\end{aligned}
$$

Ex. 7.10: Note: v_{O} is 1.80 V...
SPICE: vs ... pulse 200m 500m 0 999n 1n 0n 1u
Eq. 7.56: $\quad \mathrm{V}_{\operatorname{VOS}} \equiv \mathrm{V}_{\mathrm{R}}-\mathrm{V}_{\mathrm{FB}(\mathrm{AVG})}=\ldots$

Eq. 7.80: $\Delta \mathrm{v}_{\mathrm{O}}$ is also the ripple $\mathrm{i}_{\mathrm{C}(\mathrm{AC})}$'s average produces when $\mathrm{i}_{\mathrm{C}(\mathrm{AC})}$ is positive. Since i_{L} ripples across $\Delta \mathrm{i}_{\mathrm{L}}$ in CCM and $\mathrm{i}_{\mathrm{L}(\mathrm{AC})}$ is positive across half of $\mathrm{t}_{\mathrm{SW}}, \mathrm{i}_{\mathrm{C}(\mathrm{AC})}$ peaks with $0.5 \Delta \mathrm{i}_{\mathrm{L}}$ and averages half of that across $0.5 t_{\text {sw }}$. So Δv_{o} is effectively the ripple $\Delta i_{L} / 4$ produces across $t_{s w} / 2$:

$$
\Delta \mathrm{v}_{\mathrm{O}}=\left(\frac{0.5 \Delta \mathrm{i}_{\mathrm{L}}}{2}\right)\left(\frac{\mathrm{t}_{\mathrm{sw}}}{2}\right)\left(\frac{1}{\mathrm{C}_{\mathrm{o}}}\right)=\frac{\Delta \mathrm{i}_{\mathrm{L}}}{8 \mathrm{f}_{\mathrm{sw}} \mathrm{C}_{\mathrm{o}}}
$$

Sec. 8.1.1.C: $\quad \beta_{I F B(M F)}$ is greater than R_{L} when L_{X} overcomes R_{L} before C_{F} shorts with respect to R_{F}.
Sec. 8.2.2: $\quad p_{F B}$ should be $p_{F B X}$.

Fig. 8.10:

Sec. 8.3.3.D: t_{P} is usually much lower than $t_{S W}$, so minimizing t_{P} is usually not as critical as minimizing power. And since $P_{S T}$ is usually much lower than P_{G} and t_{P} is less sensitive to N, reducing and limiting N to three or five is not uncommon.

Fig. 8.33:

Fig. 8.36:

Appendix: Note on MOSFET Model: ... C C GS currents. Drain and source currents also include drain- and source-body diode currents.

